Talaue Cherryl O, del Rosario Ricardo C H, Pfeiffer Friedhelm, Mendoza Eduardo R, Oesterhelt Dieter
Institute of Mathematics, University of the Philippines, Diliman, Quezon City, Philippines.
Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Martinsried, Germany.
PLoS One. 2016 Mar 24;11(3):e0151839. doi: 10.1371/journal.pone.0151839. eCollection 2016.
The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.
嗜盐古菌盐沼盐杆菌能够通过三种不同的过程产生能量,即光合作用、氧化磷酸化和精氨酸发酵,因此是生物能量学中的一种模式生物。与其由细菌视紫红质驱动的光合作用相比,对其呼吸途径建模的关注较少。我们创建了一个常微分方程组来模拟其氧化磷酸化过程。该模型由电子传递链、ATP合酶、钾离子单向转运体和钠-质子反向转运体组成。通过将模型参数与实验数据拟合,我们表明该模型可以解释关于质子动力势产生、ATP生成以及钠-质子反向转运体和钾离子单向转运体之间离子电荷平衡的数据。我们对模型参数进行了敏感性分析,以确定模型将如何响应参数值的扰动。我们推导的模型和参数提供了一种资源,可用于对盐沼盐杆菌生物能量学的分析研究。