Sugita Ryohei, Kobayashi Natsuko I, Hirose Atsushi, Saito Takayuki, Iwata Ren, Tanoi Keitaro, Nakanishi Tomoko M
Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan.
AgroSolutions Division-Japan, Sumitomo Chemical Co., Ltd., 4-6-1, Ichibancho, Aoba-ku Sendai, Miyagi, 980-0811 Japan.
Plant Cell Physiol. 2016 Apr;57(4):743-53. doi: 10.1093/pcp/pcw056. Epub 2016 Mar 24.
Minerals and photosynthates are essential for many plant processes, but their imaging in live plants is difficult. We have developed a method for their live imaging in Arabidopsis using a real-time radioisotope imaging system. When each radioisotope,(22)Na,(28)Mg,(32)P-phosphate,(35)S-sulfate,(42)K,(45)Ca,(54)Mn and(137)Cs, was employed as an ion tracer, ion movement from root to shoot over 24 h was clearly observed. The movements of(22)Na,(42)K,(32)P,(35)S and(137)Cs were fast so that they spread to the tip of stems. In contrast, high accumulation of(28)Mg,(45)Ca and(54)Mn was found in the basal part of the main stem. Based on this time-course analysis, the velocity of ion movement in the main stem was calculated, and found to be fastest for S and K among the ions we tested in this study. Furthermore, application of a heat-girdling treatment allowed determination of individual ion movement via xylem flow alone, excluding phloem flow, within the main stem of 43-day-old Arabidopsis inflorescences. We also successfully developed a new system for visualizing photosynthates using labeled carbon dioxide,(14)CO2 Using this system, the switching of source/sink organs and phloem flow direction could be monitored in parts of whole shoots and over time. In roots,(14)C photosynthates accumulated intensively in the growing root tip area, 200-800 µm behind the meristem. These results show that this real-time radioisotope imaging system allows visualization of many nuclides over a long time-course and thus constitutes a powerful tool for the analysis of various physiological phenomena.
矿物质和光合产物对许多植物生理过程至关重要,但在活体植物中对其进行成像却很困难。我们开发了一种利用实时放射性同位素成像系统对拟南芥中的这些物质进行活体成像的方法。当使用每种放射性同位素(²²Na、²⁸Mg、³²P - 磷酸盐、³⁵S - 硫酸盐、⁴²K、⁴⁵Ca、⁵⁴Mn和¹³⁷Cs)作为离子示踪剂时,能清晰观察到离子在24小时内从根向地上部的移动。²²Na、⁴²K、³²P、³⁵S和¹³⁷Cs的移动速度很快,以至于它们扩散到了茎尖。相比之下,在主茎基部发现了²⁸Mg、⁴⁵Ca和⁵⁴Mn的高积累。基于此时间进程分析,计算了主茎中离子移动的速度,发现在本研究测试的离子中,S和K的移动速度最快。此外,通过热环割处理,可以确定仅通过木质部流动(排除韧皮部流动)在43日龄拟南芥花序主茎内的单个离子移动情况。我们还成功开发了一种使用标记二氧化碳¹⁴CO₂可视化光合产物的新系统。利用该系统,可以监测整个地上部部分区域随时间推移的源/库器官转换和韧皮部流动方向。在根中,¹⁴C光合产物在分生组织后方200 - 800 µm的生长根尖区域大量积累。这些结果表明,这种实时放射性同位素成像系统能够在长时间进程中对多种核素进行可视化,因此是分析各种生理现象的有力工具。