Banister Katie, Boachie Charles, Bourne Rupert, Cook Jonathan, Burr Jennifer M, Ramsay Craig, Garway-Heath David, Gray Joanne, McMeekin Peter, Hernández Rodolfo, Azuara-Blanco Augusto
Health Services Research Unit, University of Aberdeen, Aberdeen, United Kingdom.
Robertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom.
Ophthalmology. 2016 May;123(5):930-8. doi: 10.1016/j.ophtha.2016.01.041. Epub 2016 Mar 23.
To compare the diagnostic performance of automated imaging for glaucoma.
Prospective, direct comparison study.
Adults with suspected glaucoma or ocular hypertension referred to hospital eye services in the United Kingdom.
We evaluated 4 automated imaging test algorithms: the Heidelberg Retinal Tomography (HRT; Heidelberg Engineering, Heidelberg, Germany) glaucoma probability score (GPS), the HRT Moorfields regression analysis (MRA), scanning laser polarimetry (GDx enhanced corneal compensation; Glaucoma Diagnostics (GDx), Carl Zeiss Meditec, Dublin, CA) nerve fiber indicator (NFI), and Spectralis optical coherence tomography (OCT; Heidelberg Engineering) retinal nerve fiber layer (RNFL) classification. We defined abnormal tests as an automated classification of outside normal limits for HRT and OCT or NFI ≥ 56 (GDx). We conducted a sensitivity analysis, using borderline abnormal image classifications. The reference standard was clinical diagnosis by a masked glaucoma expert including standardized clinical assessment and automated perimetry. We analyzed 1 eye per patient (the one with more advanced disease). We also evaluated the performance according to severity and using a combination of 2 technologies.
Sensitivity and specificity, likelihood ratios, diagnostic, odds ratio, and proportion of indeterminate tests.
We recruited 955 participants, and 943 were included in the analysis. The average age was 60.5 years (standard deviation, 13.8 years); 51.1% were women. Glaucoma was diagnosed in at least 1 eye in 16.8%; 32% of participants had no glaucoma-related findings. The HRT MRA had the highest sensitivity (87.0%; 95% confidence interval [CI], 80.2%-92.1%), but lowest specificity (63.9%; 95% CI, 60.2%-67.4%); GDx had the lowest sensitivity (35.1%; 95% CI, 27.0%-43.8%), but the highest specificity (97.2%; 95% CI, 95.6%-98.3%). The HRT GPS sensitivity was 81.5% (95% CI, 73.9%-87.6%), and specificity was 67.7% (95% CI, 64.2%-71.2%); OCT sensitivity was 76.9% (95% CI, 69.2%-83.4%), and specificity was 78.5% (95% CI, 75.4%-81.4%). Including only eyes with severe glaucoma, sensitivity increased: HRT MRA, HRT GPS, and OCT would miss 5% of eyes, and GDx would miss 21% of eyes. A combination of 2 different tests did not improve the accuracy substantially.
Automated imaging technologies can aid clinicians in diagnosing glaucoma, but may not replace current strategies because they can miss some cases of severe glaucoma.
比较青光眼自动成像的诊断性能。
前瞻性直接比较研究。
转诊至英国医院眼科服务机构的疑似青光眼或高眼压症成人患者。
我们评估了4种自动成像测试算法:海德堡视网膜断层扫描(HRT;德国海德堡海德堡工程公司)青光眼概率评分(GPS)、HRT摩尔菲尔德回归分析(MRA)、扫描激光偏振仪(GDx增强角膜补偿;青光眼诊断仪(GDx),美国加利福尼亚州都柏林卡尔蔡司医疗技术公司)神经纤维指数(NFI)以及光学相干断层扫描(OCT;海德堡工程公司)视网膜神经纤维层(RNFL)分类。我们将异常测试定义为HRT和OCT超出正常范围的自动分类或NFI≥56(GDx)。我们使用临界异常图像分类进行了敏感性分析。参考标准是由一位蒙面青光眼专家进行的临床诊断,包括标准化临床评估和自动视野检查。我们分析了每位患者的一只眼睛(病情更严重的那只眼睛)。我们还根据严重程度并使用两种技术的组合评估了性能。
敏感性和特异性、似然比、诊断比值比以及不确定测试的比例。
我们招募了955名参与者,943名被纳入分析。平均年龄为60.5岁(标准差13.8岁);51.1%为女性。至少一只眼睛被诊断为青光眼的比例为16.8%;32%的参与者没有青光眼相关发现。HRT MRA的敏感性最高(87.0%;95%置信区间[CI],80.2% - 92.1%),但特异性最低(63.9%;95% CI,60.2% - 67.4%);GDx的敏感性最低(35.1%;95% CI,27.0% - 43.8%),但特异性最高(97.2%;95% CI,95.6% - 98.3%)。HRT GPS的敏感性为81.5%(95% CI,73.9% - 87.6%),特异性为67.7%(95% CI,64.2% - 71.2%);OCT的敏感性为76.9%(95% CI,69.2% - 83.4%),特异性为78.5%(95% CI,75.4% - 81.4%)。仅纳入重度青光眼患者的眼睛时,敏感性增加:HRT MRA、HRT GPS和OCT会漏诊5%的眼睛,GDx会漏诊21%的眼睛。两种不同测试的组合并未显著提高准确性。
自动成像技术可帮助临床医生诊断青光眼,但可能无法取代当前策略,因为它们可能会漏诊一些重度青光眼病例。