Suppr超能文献

药物研发中的ADME性质评估:使用NSGA-II和Boosting相结合的方法预测Caco-2细胞渗透性

ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting.

作者信息

Wang Ning-Ning, Dong Jie, Deng Yin-Hua, Zhu Min-Feng, Wen Ming, Yao Zhi-Jiang, Lu Ai-Ping, Wang Jian-Bing, Cao Dong-Sheng

机构信息

School of Pharmaceutical Sciences, Central South University , Changsha 410013, P. R. China.

School of Mathematics and Statistics, Central South University , Changsha 410083, P. R. China.

出版信息

J Chem Inf Model. 2016 Apr 25;56(4):763-73. doi: 10.1021/acs.jcim.5b00642. Epub 2016 Apr 5.

Abstract

The Caco-2 cell monolayer model is a popular surrogate in predicting the in vitro human intestinal permeability of a drug due to its morphological and functional similarity with human enterocytes. A quantitative structure-property relationship (QSPR) study was carried out to predict Caco-2 cell permeability of a large data set consisting of 1272 compounds. Four different methods including multivariate linear regression (MLR), partial least-squares (PLS), support vector machine (SVM) regression and Boosting were employed to build prediction models with 30 molecular descriptors selected by nondominated sorting genetic algorithm-II (NSGA-II). The best Boosting model was obtained finally with R(2) = 0.97, RMSEF = 0.12, Q(2) = 0.83, RMSECV = 0.31 for the training set and RT(2) = 0.81, RMSET = 0.31 for the test set. A series of validation methods were used to assess the robustness and predictive ability of our model according to the OECD principles and then define its applicability domain. Compared with the reported QSAR/QSPR models about Caco-2 cell permeability, our model exhibits certain advantage in database size and prediction accuracy to some extent. Finally, we found that the polar volume, the hydrogen bond donor, the surface area and some other descriptors can influence the Caco-2 permeability to some extent. These results suggest that the proposed model is a good tool for predicting the permeability of drug candidates and to perform virtual screening in the early stage of drug development.

摘要

由于Caco-2细胞单层模型在形态和功能上与人类肠上皮细胞相似,因此它是预测药物体外人体肠道通透性的常用替代模型。开展了一项定量构效关系(QSPR)研究,以预测由1272种化合物组成的大数据集的Caco-2细胞通透性。采用了四种不同方法,包括多元线性回归(MLR)、偏最小二乘法(PLS)、支持向量机(SVM)回归和Boosting,利用非支配排序遗传算法-II(NSGA-II)选择的30个分子描述符建立预测模型。最终获得的最佳Boosting模型,训练集的R(2) = 0.97、RMSEF = 0.12、Q(2) = 0.83、RMSECV = 0.31,测试集的RT(2) = 0.81、RMSET = 0.31。根据经合组织原则,使用了一系列验证方法来评估我们模型的稳健性和预测能力,然后定义其适用范围。与已报道的关于Caco-2细胞通透性的QSAR/QSPR模型相比,我们的模型在数据库规模和预测准确性方面在一定程度上表现出优势。最后,我们发现极性体积、氢键供体、表面积和其他一些描述符在一定程度上会影响Caco-2通透性。这些结果表明,所提出的模型是预测候选药物通透性以及在药物开发早期进行虚拟筛选的良好工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验