Suppr超能文献

超导硫化氢体系中的量子氢键对称化。

Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system.

机构信息

Fisika Aplikatua 1 Saila, EUITI Bilbao, University of the Basque Country (UPV/EHU), Rafael Moreno "Pitxitxi" Pasealekua 3, 48013 Bilbao, Spain.

Donostia International Physics Center (DIPC), Manuel Lardizabal Pasealekua 4, 20018 Donostia/San Sebastián, Spain.

出版信息

Nature. 2016 Apr 7;532(7597):81-4. doi: 10.1038/nature17175. Epub 2016 Mar 28.

Abstract

The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.

摘要

质子的量子性质可以极大地影响氢化合物的结构和物理性质。例如,在 H2O 的高压相中,量子质子波动导致氢键对称化,并使相图中不对称和对称结构之间的边界降低了 30 吉帕斯卡(参考文献 3)。在这里,我们表明,在最近发现的超导转变温度为 203 开尔文、超导压力为 155 吉帕斯卡的硫氢化物超导体中,发生了类似的量子对称化,这是迄今为止报道的任何超导体中最高的 Tc。超导性是通过形成具有化学式 H3S(三硫化物)的化合物而发生的,其中硫原子排列在体心立方晶格上。如果将氢原子视为经典粒子,那么对于大于约 175 吉帕斯卡的压力,它们被预测将恰好位于 Im3m 对称结构中两个硫原子之间的中间位置。在较低的压力下,氢原子移动到偏心位置,在 R3m 对称结构中形成短的 H-S 共价键和较长的 H···S 氢键。X 射线衍射实验证实了 H3S 的化学计量和硫晶格位,但无法区分两种相。从头算密度泛函理论计算表明,量子核运动将 H3S 的对称化压力降低了 72 吉帕斯卡,将 D3S 的对称化压力降低了 60 吉帕斯卡。因此,我们预测 Im3m 相在测量到的高 Tc 范围内占主导地位。我们的计算准确地再现了观察到的 Tc 随压力的变化,但不适用于 R3m 相。因此,质子的量子性质从根本上改变了 H3S 的超导相图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验