Elbehery Ali H A, Aziz Ramy K, Siam Rania
1 Graduate Program of Biotechnology, The American University in Cairo , Cairo, Egypt .
2 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt .
OMICS. 2016 Apr;20(4):229-38. doi: 10.1089/omi.2015.0191. Epub 2016 Mar 31.
The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.
危及生命的抗生素耐药性(AR)前所未有的增加,再加上基因组和宏基因组DNA测序取得的无与伦比的进展,使得通过对AR基因(即赋予抗生素耐药性的基因)进行定量分析,在计算机上检测临床和环境宏基因组样本的耐药潜力成为必要。因此,确定一种在给定环境中定量且准确评估AR基因的最佳方法至关重要。在这里,我们优化并改进了来自宏基因组数据集的现有AR检测方法,以适当考虑抗生素靶基因中产生AR的突变。通过对三个公开可用宏基因组中先前发表的AR基因丰度进行比较宏基因组分析,我们说明了突变产生的耐药基因是如何被错误归类或忽视的,这改变了抗生素耐药组的检测和定量。此外,我们使用宏基因组模拟实验检查了影响AR基因定量结果的因素,并确定基因组大小、AR基因长度、宏基因组读数总数和选定的测序平台对检测到的AR水平有显著影响。总之,我们对当前准确检测AR和评估耐药组方法的改进建议,在真实和模拟宏基因组数据集上进行测试时显示出可靠的结果。