Suppr超能文献

利用拟南芥和模式作物的大规模RNA测序数据鉴定用于定量表达分析的内参基因。

Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants.

作者信息

Kudo Toru, Sasaki Yohei, Terashima Shin, Matsuda-Imai Noriko, Takano Tomoyuki, Saito Misa, Kanno Maasa, Ozaki Soichi, Suwabe Keita, Suzuki Go, Watanabe Masao, Matsuoka Makoto, Takayama Seiji, Yano Kentaro

机构信息

School of Agriculture, Meiji University.

出版信息

Genes Genet Syst. 2016 Oct 13;91(2):111-125. doi: 10.1266/ggs.15-00065. Epub 2016 Apr 1.

Abstract

In quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes. Recently emerging RNA sequencing (RNA-seq) provides an ideal resource for comprehensive exploration of reference genes since this method is capable of detecting all expressed genes, in principle including even unknown genes. We report the results of a comprehensive exploration of reference genes using public RNA-seq data from plants such as Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Solanum lycopersicum (tomato) and Oryza sativa (rice). To select reference genes suitable for the broadest experimental conditions possible, candidates were surveyed by the following four steps: (1) evaluation of the basal expression level of each gene in each experiment; (2) evaluation of the expression stability of each gene in each experiment; (3) evaluation of the expression stability of each gene across the experiments; and (4) selection of top-ranked genes, after ranking according to the number of experiments in which the gene was expressed stably. Employing this procedure, 13, 10, 12 and 21 top candidates for reference genes were proposed in Arabidopsis, soybean, tomato and rice, respectively. Microarray expression data confirmed that the expression of the proposed reference genes under broad experimental conditions was more stable than that of commonly used reference genes. These novel reference genes will be useful for analyzing gene expression profiles across experiments carried out under various experimental conditions.

摘要

在定量基因表达分析中,经常使用一个参考基因作为内对照进行标准化,以便对结果进行恰当解读。人们致力于利用微阵列转录组数据探索更优的新型参考基因,并通过靶向分析评估常用参考基因。然而,由于在微阵列分析中可特异性检测到的基因数量完全取决于探针设计,利用微阵列数据进行探索可能会错过一些最佳的参考基因选择。最近兴起的RNA测序(RNA-seq)为全面探索参考基因提供了理想资源,因为该方法原则上能够检测所有表达的基因,甚至包括未知基因。我们报告了利用来自拟南芥、大豆、番茄和水稻等植物的公开RNA-seq数据对参考基因进行全面探索的结果。为了选择尽可能适用于最广泛实验条件的参考基因,通过以下四个步骤对候选基因进行了考察:(1)评估每个实验中每个基因的基础表达水平;(2)评估每个实验中每个基因的表达稳定性;(3)评估每个基因在各个实验中的表达稳定性;(4)根据基因稳定表达的实验数量进行排名后,选择排名靠前的基因。采用这一程序,分别在拟南芥、大豆、番茄和水稻中提出了13个、10个、12个和21个排名靠前的参考基因候选者。微阵列表达数据证实,在广泛的实验条件下,所提出的参考基因的表达比常用参考基因更稳定。这些新型参考基因将有助于分析在各种实验条件下进行的不同实验中的基因表达谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验