Silva G N, Tomaz R S, Sant'Anna I C, Carneiro V Q, Cruz C D, Nascimento M
Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Laboratório de Bioinformática, Viçosa, MG, Brasil.
Genet Mol Res. 2016 Mar 28;15(1):gmr7676. doi: 10.4238/gmr.15017676.
Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.
人工神经网络在应用于育种计划时已显示出巨大潜力。在本研究中,我们提议将人工神经网络作为传统预测方法的可行替代方案。我们对这些网络在预测育种值方面的效率进行了全面评估。因此,我们考虑了八种模拟场景,并且为了进行遗传值预测,在一个设计为多层感知器的网络中,除了表型均值外还考虑了七个统计参数。在对不同的网络配置进行评估后,结果表明神经网络相对于基于线性模型的估计程序具有优越性,并显示出高预测准确性和网络效率。