Department of Animal Sciences, São Paulo State University, Jaboticabal, SP 14884-000, Brazil.
J Anim Sci. 2012 Dec;90(13):4716-22. doi: 10.2527/jas.2012-4857.
Genomewide marker information can improve the reliability of breeding value predictions for young selection candidates in genomic selection. However, the cost of genotyping limits its use to elite animals, and how such selective genotyping affects predictive ability of genomic selection models is an open question. We performed a simulation study to evaluate the quality of breeding value predictions for selection candidates based on different selective genotyping strategies in a population undergoing selection. The genome consisted of 10 chromosomes of 100 cM each. After 5,000 generations of random mating with a population size of 100 (50 males and 50 females), generation G(0) (reference population) was produced via a full factorial mating between the 50 males and 50 females from generation 5,000. Different levels of selection intensities (animals with the largest yield deviation value) in G(0) or random sampling (no selection) were used to produce offspring of G(0) generation (G(1)). Five genotyping strategies were used to choose 500 animals in G(0) to be genotyped: 1) Random: randomly selected animals, 2) Top: animals with largest yield deviation values, 3) Bottom: animals with lowest yield deviations values, 4) Extreme: animals with the 250 largest and the 250 lowest yield deviations values, and 5) Less Related: less genetically related animals. The number of individuals in G(0) and G(1) was fixed at 2,500 each, and different levels of heritability were considered (0.10, 0.25, and 0.50). Additionally, all 5 selective genotyping strategies (Random, Top, Bottom, Extreme, and Less Related) were applied to an indicator trait in generation G(0,) and the results were evaluated for the target trait in generation G(1), with the genetic correlation between the 2 traits set to 0.50. The 5 genotyping strategies applied to individuals in G(0) (reference population) were compared in terms of their ability to predict the genetic values of the animals in G(1) (selection candidates). Lower correlations between genomic-based estimates of breeding values (GEBV) and true breeding values (TBV) were obtained when using the Bottom strategy. For Random, Extreme, and Less Related strategies, the correlation between GEBV and TBV became slightly larger as selection intensity decreased and was largest when no selection occurred. These 3 strategies were better than the Top approach. In addition, the Extreme, Random, and Less Related strategies had smaller predictive mean squared errors (PMSE) followed by the Top and Bottom methods. Overall, the Extreme genotyping strategy led to the best predictive ability of breeding values, indicating that animals with extreme yield deviations values in a reference population are the most informative when training genomic selection models.
全基因组标记信息可以提高基因组选择中对年轻选择候选者的育种值预测的可靠性。然而,基因分型的成本限制了其在精英动物中的应用,以及这种选择性基因分型如何影响基因组选择模型的预测能力是一个悬而未决的问题。我们进行了一项模拟研究,以评估在经历选择的群体中,基于不同选择性基因分型策略的候选者的育种值预测的质量。基因组由 10 条 100cM 的染色体组成。在随机交配 5000 代后,种群大小为 100(50 只雄性和 50 只雌性),通过第 5000 代的 50 只雄性和 50 只雌性的完全因子交配产生了 G(0)(参考群体)。在 G(0)中使用不同水平的选择强度(具有最大产量偏差值的动物)或随机抽样(无选择)来产生 G(0)代的后代(G(1))。使用了五种基因分型策略从 G(0)中选择 500 只动物进行基因分型:1)随机:随机选择动物,2)最高:具有最大产量偏差值的动物,3)最低:具有最低产量偏差值的动物,4)极端:具有最大和最小产量偏差值的 250 只动物,5)较少相关:遗传关系较少的动物。G(0)和 G(1)中的个体数量分别固定为 2500 个,并考虑了不同水平的遗传力(0.10、0.25 和 0.50)。此外,在 G(0)世代中应用了所有 5 种选择性基因分型策略(随机、最高、最低、极端和较少相关),并在 G(1)世代中的目标性状中评估了结果,将 2 个性状之间的遗传相关性设置为 0.50。在 G(0)(参考群体)中应用的 5 种基因分型策略在预测 G(1)(候选选择者)动物的遗传值方面的能力方面进行了比较。当使用 Bottom 策略时,基于基因组的估计育种值(GEBV)和真实育种值(TBV)之间的相关性较低。对于随机、极端和较少相关的策略,随着选择强度的降低,GEBV 和 TBV 之间的相关性略微增大,并且当没有选择时最大。这 3 种策略优于 Top 方法。此外,极端、随机和较少相关策略的预测均方误差(PMSE)较小,其次是 Top 和 Bottom 方法。总体而言,极端基因分型策略导致了最佳的育种值预测能力,表明在参考群体中具有极端产量偏差值的动物在训练基因组选择模型时最具信息性。