Suppr超能文献

小脑中的爆发依赖性双向可塑性由突触前 NMDA 受体驱动。

Burst-Dependent Bidirectional Plasticity in the Cerebellum Is Driven by Presynaptic NMDA Receptors.

机构信息

Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France.

Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France; Departments of Statistics and Neurobiology, University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell Rep. 2016 Apr 5;15(1):104-116. doi: 10.1016/j.celrep.2016.03.004. Epub 2016 Mar 24.

Abstract

Numerous studies have shown that cerebellar function is related to the plasticity at the synapses between parallel fibers and Purkinje cells. How specific input patterns determine plasticity outcomes, as well as the biophysics underlying plasticity of these synapses, remain unclear. Here, we characterize the patterns of activity that lead to postsynaptically expressed LTP using both in vivo and in vitro experiments. Similar to the requirements of LTD, we find that high-frequency bursts are necessary to trigger LTP and that this burst-dependent plasticity depends on presynaptic NMDA receptors and nitric oxide (NO) signaling. We provide direct evidence for calcium entry through presynaptic NMDA receptors in a subpopulation of parallel fiber varicosities. Finally, we develop and experimentally verify a mechanistic plasticity model based on NO and calcium signaling. The model reproduces plasticity outcomes from data and predicts the effect of arbitrary patterns of synaptic inputs on Purkinje cells, thereby providing a unified description of plasticity.

摘要

大量研究表明,小脑功能与平行纤维和浦肯野细胞之间突触的可塑性有关。特定的输入模式如何决定可塑性的结果,以及这些突触可塑性的生物物理基础尚不清楚。在这里,我们使用体内和体外实验来描述导致突触后表达长时程增强(LTP)的活动模式。与 LTD 的要求类似,我们发现高频爆发是触发 LTP 的必要条件,这种爆发依赖性可塑性依赖于突触前 NMDA 受体和一氧化氮(NO)信号。我们提供了直接证据证明在平行纤维末梢的亚群中,通过突触前 NMDA 受体进入钙。最后,我们开发并实验验证了一个基于 NO 和钙信号的机械性可塑性模型。该模型从数据中再现了可塑性的结果,并预测了任意突触输入模式对浦肯野细胞的影响,从而提供了对可塑性的统一描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验