Suppr超能文献

VEGFR-2因配体结合而发生的构象转换。

VEGFR-2 conformational switch in response to ligand binding.

作者信息

Sarabipour Sarvenaz, Ballmer-Hofer Kurt, Hristova Kalina

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States.

Laboratory of Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland.

出版信息

Elife. 2016 Apr 7;5:e13876. doi: 10.7554/eLife.13876.

Abstract

VEGFR-2 is the primary regulator of angiogenesis, the development of new blood vessels from pre-existing ones. VEGFR-2 has been hypothesized to be monomeric in the absence of bound ligand, and to undergo dimerization and activation only upon ligand binding. Using quantitative FRET and biochemical analysis, we show that VEGFR-2 forms dimers also in the absence of ligand when expressed at physiological levels, and that these dimers are phosphorylated. Ligand binding leads to a change in the TM domain conformation, resulting in increased kinase domain phosphorylation. Inter-receptor contacts within the extracellular and TM domains are critical for the establishment of the unliganded dimer structure, and for the transition to the ligand-bound active conformation. We further show that the pathogenic C482R VEGFR-2 mutant, linked to infantile hemangioma, promotes ligand-independent signaling by mimicking the structure of the ligand-bound wild-type VEGFR-2 dimer.

摘要

血管内皮生长因子受体-2(VEGFR-2)是血管生成(即从已有的血管发育出新血管)的主要调节因子。据推测,在没有结合配体的情况下,VEGFR-2呈单体状态,只有在配体结合后才会发生二聚化并激活。通过定量荧光共振能量转移(FRET)和生化分析,我们发现,当以生理水平表达时,VEGFR-2在没有配体的情况下也会形成二聚体,并且这些二聚体会被磷酸化。配体结合导致跨膜(TM)结构域构象发生变化,从而导致激酶结构域磷酸化增加。细胞外和TM结构域内的受体间接触对于未结合配体的二聚体结构的建立以及向配体结合的活性构象的转变至关重要。我们进一步表明,与婴儿血管瘤相关的致病性C482R VEGFR-2突变体通过模拟配体结合的野生型VEGFR-2二聚体的结构来促进非配体依赖性信号传导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bb6/4829425/5f8e32d1e461/elife-13876-fig1.jpg

相似文献

1
VEGFR-2 conformational switch in response to ligand binding.
Elife. 2016 Apr 7;5:e13876. doi: 10.7554/eLife.13876.
2
Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells.
Breast Cancer Res Treat. 2017 Jun;163(3):423-434. doi: 10.1007/s10549-017-4189-5. Epub 2017 Mar 16.
3
Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers.
FASEB J. 2010 Jan;24(1):32-8. doi: 10.1096/fj.09-132670. Epub 2009 Sep 2.
4
Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization.
Blood. 2012 Feb 16;119(7):1781-8. doi: 10.1182/blood-2011-11-390922. Epub 2011 Dec 29.
8
Structure of a VEGF-VEGF receptor complex determined by electron microscopy.
Nat Struct Mol Biol. 2007 Mar;14(3):249-50. doi: 10.1038/nsmb1202. Epub 2007 Feb 11.
9
VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis.
Cell Res. 2010 Dec;20(12):1319-31. doi: 10.1038/cr.2010.116. Epub 2010 Aug 10.
10
NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):164-72. doi: 10.1016/j.bbamem.2013.08.021. Epub 2013 Sep 10.

引用本文的文献

1
Conversion of natural cytokine receptors into orthogonal synthetic biosensors.
Nat Chem Biol. 2025 Aug 22. doi: 10.1038/s41589-025-01986-1.
2
Exploring structure-function relationships in engineered receptor performance using computational structure prediction.
GEN Biotechnol. 2025 Feb;4(1):37-55. doi: 10.1089/genbio.2024.0057. Epub 2025 Feb 17.
3
Impact of ligand binding on VEGFR1, VEGFR2, and NRP1 localization in human endothelial cells.
PLoS Comput Biol. 2025 Jul 16;21(7):e1013254. doi: 10.1371/journal.pcbi.1013254. eCollection 2025 Jul.
7
Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review).
Exp Ther Med. 2025 May 20;30(1):143. doi: 10.3892/etm.2025.12893. eCollection 2025 Jul.
8
Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives.
Signal Transduct Target Ther. 2025 May 19;10(1):170. doi: 10.1038/s41392-025-02249-0.
10
Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition.
Biomedicines. 2025 Mar 21;13(4):772. doi: 10.3390/biomedicines13040772.

本文引用的文献

1
Fully quantified spectral imaging reveals in vivo membrane protein interactions.
Integr Biol (Camb). 2016 Feb;8(2):216-29. doi: 10.1039/c5ib00202h. Epub 2016 Jan 20.
2
Mechanism of FGF receptor dimerization and activation.
Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262.
3
Unliganded fibroblast growth factor receptor 1 forms density-independent dimers.
J Biol Chem. 2015 Oct 2;290(40):24166-77. doi: 10.1074/jbc.M115.681395. Epub 2015 Aug 13.
4
Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor Trafficking: Insights from a Computational Model.
PLoS Comput Biol. 2015 Jun 12;11(6):e1004158. doi: 10.1371/journal.pcbi.1004158. eCollection 2015 Jun.
5
Analytical characterization of plasma membrane-derived vesicles produced via osmotic and chemical vesiculation.
Biochim Biophys Acta. 2015 Jul;1848(7):1591-8. doi: 10.1016/j.bbamem.2015.04.002. Epub 2015 Apr 17.
6
FGFR3 unliganded dimer stabilization by the juxtamembrane domain.
J Mol Biol. 2015 Apr 24;427(8):1705-14. doi: 10.1016/j.jmb.2015.02.013. Epub 2015 Feb 15.
7
Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization.
Biophys J. 2015 Jan 20;108(2):272-8. doi: 10.1016/j.bpj.2014.11.3460.
8
How IGF-1 activates its receptor.
Elife. 2014 Sep 25;3:e03772. doi: 10.7554/eLife.03772.
10
Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation.
Structure. 2014 Aug 5;22(8):1077-1089. doi: 10.1016/j.str.2014.05.010. Epub 2014 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验