Suppr超能文献

相似文献

1
A genome editing primer for the hematologist.
Blood. 2016 May 26;127(21):2525-35. doi: 10.1182/blood-2016-01-678151. Epub 2016 Apr 6.
2
Welcoming a new age for gene therapy in hematology.
Blood. 2016 May 26;127(21):2523-4. doi: 10.1182/blood-2016-03-678714. Epub 2016 Apr 6.
3
Application of genome editing technologies to the study and treatment of hematological disease.
Adv Biol Regul. 2016 Jan;60:122-134. doi: 10.1016/j.jbior.2015.09.005. Epub 2015 Sep 26.
4
Ethical and regulatory aspects of genome editing.
Blood. 2016 May 26;127(21):2553-60. doi: 10.1182/blood-2016-01-678136. Epub 2016 Apr 6.
5
The clinical applications of genome editing in HIV.
Blood. 2016 May 26;127(21):2546-52. doi: 10.1182/blood-2016-01-678144. Epub 2016 Apr 6.
6
Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.
Hum Gene Ther. 2016 Oct;27(10):729-740. doi: 10.1089/hum.2016.107. Epub 2016 Aug 2.
7
At the Heart of Genome Editing and Cardiovascular Diseases.
Circ Res. 2018 Jul 6;123(2):221-223. doi: 10.1161/CIRCRESAHA.118.312676.
8
Therapeutic editing of hepatocyte genome in vivo.
J Hepatol. 2017 Oct;67(4):818-828. doi: 10.1016/j.jhep.2017.05.012. Epub 2017 May 17.
9
Customizing the genome as therapy for the β-hemoglobinopathies.
Blood. 2016 May 26;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub 2016 Apr 6.
10
DNA nicks promote efficient and safe targeted gene correction.
PLoS One. 2011;6(9):e23981. doi: 10.1371/journal.pone.0023981. Epub 2011 Sep 1.

引用本文的文献

1
Gene Therapy: A Revolutionary Step in Treating Thalassemia.
Hematol Rep. 2024 Oct 21;16(4):656-668. doi: 10.3390/hematolrep16040064.
2
CRISPR-Cpf1 system and its applications in animal genome editing.
Mol Genet Genomics. 2024 Aug 1;299(1):75. doi: 10.1007/s00438-024-02166-x.
3
Multi-faceted CRISPR/Cas technological innovation aspects in the framework of 3P medicine.
EPMA J. 2023 May 22;14(2):201-217. doi: 10.1007/s13167-023-00324-6. eCollection 2023 Jun.
4
Gene therapy for sickle cell disease: moving from the bench to the bedside.
Blood. 2021 Sep 16;138(11):932-941. doi: 10.1182/blood.2019003776.
5
Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10976-10982. doi: 10.1073/pnas.1917125117. Epub 2020 May 1.
6
Pathophysiology and recent therapeutic insights of sickle cell disease.
Ann Hematol. 2020 May;99(5):925-935. doi: 10.1007/s00277-020-03977-9. Epub 2020 Mar 10.
7
CRISP Points on Establishing - In Vitro Culture Experiments in a Resource Constraint Haematology Oncology Research Lab.
Indian J Hematol Blood Transfus. 2019 Apr;35(2):208-214. doi: 10.1007/s12288-018-1008-z. Epub 2018 Sep 17.
8
Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia.
Blood. 2019 May 23;133(21):2255-2262. doi: 10.1182/blood-2019-01-895094. Epub 2019 Jan 31.
9
Engineering chimeric antigen receptor-T cells for cancer treatment.
Mol Cancer. 2018 Feb 15;17(1):32. doi: 10.1186/s12943-018-0814-0.
10
Characterization of Gene Alterations following Editing of the β-Globin Gene Locus in Hematopoietic Stem/Progenitor Cells.
Mol Ther. 2018 Feb 7;26(2):468-479. doi: 10.1016/j.ymthe.2017.11.001. Epub 2017 Nov 9.

本文引用的文献

1
Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.
Blood. 2016 Feb 18;127(7):839-48. doi: 10.1182/blood-2015-09-618587. Epub 2016 Jan 12.
2
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
3
In vivo gene editing in dystrophic mouse muscle and muscle stem cells.
Science. 2016 Jan 22;351(6271):407-411. doi: 10.1126/science.aad5177. Epub 2015 Dec 31.
4
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.
Science. 2016 Jan 22;351(6271):403-7. doi: 10.1126/science.aad5143. Epub 2015 Dec 31.
5
Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.
Science. 2016 Jan 22;351(6271):400-3. doi: 10.1126/science.aad5725. Epub 2015 Dec 31.
6
Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery.
Nat Methods. 2016 Jan;13(1):41-50. doi: 10.1038/nmeth.3684.
7
CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
J Med Genet. 2016 Feb;53(2):91-7. doi: 10.1136/jmedgenet-2015-103409. Epub 2015 Dec 16.
8
A mechanism for the suppression of homologous recombination in G1 cells.
Nature. 2015 Dec 17;528(7582):422-6. doi: 10.1038/nature16142. Epub 2015 Dec 9.
9
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
10
Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors.
Cell. 2015 Dec 17;163(7):1663-77. doi: 10.1016/j.cell.2015.11.013. Epub 2015 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验