Foloppe Nicolas, Chen I-Jen
Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB21 6GB, UK.
Bioorg Med Chem. 2016 May 15;24(10):2159-89. doi: 10.1016/j.bmc.2016.03.022. Epub 2016 Mar 14.
There has been an explosion of structural information for pharmaceutical compounds bound to biological targets, but the conformations and dynamics of compounds free in solution are poorly characterized, if at all. Yet, knowledge of the unbound state is essential to understand the fundamentals of molecular recognition, including the much debated conformational intramolecular reorganization energy of a compound upon binding (ΔEReorg). Also, dependable observation of the unbound compounds is important for ligand-based drug discovery, e.g. with pharmacophore modelling. Here, these questions are addressed with long (⩾0.5μs) state-of-the-art molecular dynamics (MD) simulations of 26 compounds (including 7 approved drugs) unbound in explicit solvent. These compounds were selected to be chemically diverse, with a range of flexibility, and good quality bioactive X-ray structures. The MD-simulated free compounds are compared to their bioactive structure and conformers generated with ad hoc sampling in vacuo or with implicit generalized Born (GB) aqueous solvation models. The GB conformational models clearly depart from those obtained in explicit solvent, and suffer from conformational collapse almost as severe as in vacuo. Thus, the global energy minima in vacuo or with GB are not suitable representations of the unbound state, which can instead be extensively sampled by MD simulations. Many, but not all, MD-simulated compounds displayed some structural similarity to their bioactive structure, supporting the notion of conformational pre-organization for binding. The ligand-protein complexes were also simulated in explicit solvent, to estimate ΔEReorg as an enthalpic difference ΔHReorg between the intramolecular energies in the bound and unbound states. This fresh approach yielded ΔHReorg values⩽6kcal/mol for 18 out of 26 compounds. For three particularly polar compounds 15⩽ΔHReorg⩽20kcal/mol, supporting the notion that ΔHReorg can be substantial. Those large ΔHReorg values correspond to a redistribution of electrostatic interactions upon binding. Overall, the study illustrates how MD simulations offer a promising avenue to characterize the unbound state of medicinal compounds.
与生物靶点结合的药物化合物的结构信息呈爆炸式增长,但对于溶液中游离的化合物的构象和动力学,即便有相关描述也极为有限。然而,了解未结合状态对于理解分子识别的基本原理至关重要,这其中包括备受争议的化合物结合时的构象分子内重组能(ΔEReorg)。此外,可靠地观测未结合的化合物对于基于配体的药物发现也很重要,例如在药效团建模方面。在此,通过对26种在明确溶剂中游离的化合物(包括7种已获批药物)进行长时间(⩾0.5微秒)的前沿分子动力学(MD)模拟来解决这些问题。这些化合物经过挑选,具有化学多样性、一定的灵活性以及高质量的生物活性X射线结构。将MD模拟得到的游离化合物与其生物活性结构以及通过在真空中的临时采样或隐式广义玻恩(GB)水溶剂化模型生成的构象进行比较。GB构象模型明显不同于在明确溶剂中获得的模型,并且几乎与在真空中一样遭受构象坍缩。因此,真空中或使用GB时的全局能量最小值并不能很好地代表未结合状态,而MD模拟可以对其进行广泛采样。许多但并非所有MD模拟的化合物都显示出与其生物活性结构存在一定的结构相似性,这支持了结合时构象预组织的观点。还在明确溶剂中对配体 - 蛋白质复合物进行了模拟,以估计ΔEReorg,即结合态和未结合态分子内能量之间的焓差ΔHReorg。这种新方法得出26种化合物中有18种的ΔHReorg值⩽6千卡/摩尔。对于三种特别极性的化合物,15⩽ΔHReorg⩽20千卡/摩尔,这支持了ΔHReorg可能很大的观点。那些较大的ΔHReorg值对应于结合时静电相互作用的重新分布。总体而言,该研究说明了MD模拟如何为表征药用化合物的未结合状态提供了一条很有前景的途径。