School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132, Muttenz, Switzerland.
INOFEA AG, Hochbergerstrasse 60C, 4057, Basel, Switzerland.
Angew Chem Int Ed Engl. 2016 May 17;55(21):6285-9. doi: 10.1002/anie.201600590. Epub 2016 Apr 9.
The fragile nature of most enzymes is a major hindrance to their use in industrial processes. Herein, we describe a synthetic chemical strategy to produce hybrid organic/inorganic nanobiocatalysts; it exploits the self-assembly of silane building blocks at the surface of enzymes to grow an organosilica layer, of controlled thickness, that fully shields the enzyme. Remarkably, the enzyme triggers a rearrangement of this organosilica layer into a significantly soft structure. We demonstrate that this change in stiffness correlates with the biocatalytic turnover rate, and that the organosilica layer shields the enzyme in a soft environment with a markedly enhanced resistance to denaturing stresses.
大多数酶的脆弱性质是其在工业过程中应用的主要障碍。在此,我们描述了一种合成化学策略,用于生产混合有机/无机纳米生物催化剂;它利用硅烷构建块在酶表面的自组装来生长有机硅层,其厚度可控,可完全屏蔽酶。值得注意的是,该酶会引发该有机硅层发生显著软化的结构重排。我们证明,这种硬度变化与生物催化周转率相关,并且该有机硅层在柔软的环境中屏蔽酶,从而显著增强对变性压力的抵抗力。