State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing, 400715, P. R. China.
Fiber and Polymer Science, University of California, Davis, CA, 95616, USA.
Sci Rep. 2017 Aug 29;7(1):9806. doi: 10.1038/s41598-017-10453-4.
Enzyme-immobilized nanoparticles that are both catalysis effective and recyclable would have wide applications ranging from bioengineering and food industry to environmental fields; however, creating such materials has proven extremely challenging. Herein, we present a scalable methodology to create Candida rugosa lipase-immobilized magnetic nanoparticles (L-MNPs) by the combination of nonionic reverse micelle method and FeO nanoparticles. Our approach causes the naturally abundant and sustainable Candida rugose lipase to ordered-assemble into nanoparticles with high catalytic activity and durability. The resultant L-MNPs exhibit the integrated properties of high porosity, large surface area, fractal dimension, robust enzymatic activity, good durability, and high magnetic saturation (59 emu g), which can effectively catalyze pentyl valerate esterification and be easily separated by an external magnet in 60 second. The fabrication of such fascinating L-MNPs may provide new insights for developing functional enzyme-immobilized materials towards various applications.
既具有催化效果又可回收的酶固定化纳米颗粒在生物工程、食品工业和环境领域都有广泛的应用;然而,制造这种材料极具挑战性。在此,我们提出了一种可扩展的方法,通过非离子反向胶束法和 FeO 纳米颗粒的结合,来制备固定化脂肪酶的磁性纳米颗粒(L-MNPs)。我们的方法使丰富且可持续的 Candida rugosa 脂肪酶有序组装成具有高催化活性和耐久性的纳米颗粒。所得的 L-MNPs 具有高孔隙率、大表面积、分形维数、强大的酶活性、良好的耐久性和高饱和磁化强度(59 emu g)等综合特性,可有效催化戊酸戊酯的酯化反应,并在外加磁场作用下在 60 秒内很容易分离。这种迷人的 L-MNPs 的制造可能为开发各种应用的功能性酶固定化材料提供新的思路。