Suppr超能文献

一种反胶束策略,用于制备具有强酶活性的磁性脂肪酶固定化纳米粒子。

A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity.

机构信息

State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing, 400715, P. R. China.

Fiber and Polymer Science, University of California, Davis, CA, 95616, USA.

出版信息

Sci Rep. 2017 Aug 29;7(1):9806. doi: 10.1038/s41598-017-10453-4.

Abstract

Enzyme-immobilized nanoparticles that are both catalysis effective and recyclable would have wide applications ranging from bioengineering and food industry to environmental fields; however, creating such materials has proven extremely challenging. Herein, we present a scalable methodology to create Candida rugosa lipase-immobilized magnetic nanoparticles (L-MNPs) by the combination of nonionic reverse micelle method and FeO nanoparticles. Our approach causes the naturally abundant and sustainable Candida rugose lipase to ordered-assemble into nanoparticles with high catalytic activity and durability. The resultant L-MNPs exhibit the integrated properties of high porosity, large surface area, fractal dimension, robust enzymatic activity, good durability, and high magnetic saturation (59 emu g), which can effectively catalyze pentyl valerate esterification and be easily separated by an external magnet in 60 second. The fabrication of such fascinating L-MNPs may provide new insights for developing functional enzyme-immobilized materials towards various applications.

摘要

既具有催化效果又可回收的酶固定化纳米颗粒在生物工程、食品工业和环境领域都有广泛的应用;然而,制造这种材料极具挑战性。在此,我们提出了一种可扩展的方法,通过非离子反向胶束法和 FeO 纳米颗粒的结合,来制备固定化脂肪酶的磁性纳米颗粒(L-MNPs)。我们的方法使丰富且可持续的 Candida rugosa 脂肪酶有序组装成具有高催化活性和耐久性的纳米颗粒。所得的 L-MNPs 具有高孔隙率、大表面积、分形维数、强大的酶活性、良好的耐久性和高饱和磁化强度(59 emu g)等综合特性,可有效催化戊酸戊酯的酯化反应,并在外加磁场作用下在 60 秒内很容易分离。这种迷人的 L-MNPs 的制造可能为开发各种应用的功能性酶固定化材料提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc6/5575323/2413973b239c/41598_2017_10453_Fig1_HTML.jpg

相似文献

2
Lipase-based on starch material as a development matrix with magnetite cross-linked enzyme aggregates and its application.
Int J Biol Macromol. 2018 Dec;120(Pt B):1533-1543. doi: 10.1016/j.ijbiomac.2018.09.141. Epub 2018 Sep 24.
6
Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase.
Colloids Surf B Biointerfaces. 2012 May 1;93:24-8. doi: 10.1016/j.colsurfb.2011.11.054. Epub 2011 Dec 21.
8
Evaluation of Candida rugosa Lipase Immobilized on Magnetic Nanoparticles in Enzymatic/Chemical Hydroesterification for Biodiesel Production.
Appl Biochem Biotechnol. 2022 Nov;194(11):5419-5442. doi: 10.1007/s12010-022-04046-9. Epub 2022 Jul 5.
10

引用本文的文献

1
Advances in nano-immunotherapy for hematological malignancies.
Exp Hematol Oncol. 2024 May 25;13(1):57. doi: 10.1186/s40164-024-00525-3.
3
Mechanoresponsive and recyclable biocatalytic sponges from enzyme-polymer surfactant conjugates and nanoparticles.
RSC Adv. 2018 Nov 20;8(68):39029-39038. doi: 10.1039/c8ra08221a. eCollection 2018 Nov 16.
4
Mechanistic Investigations of Growth of Anisotropic Nanostructures in Reverse Micelles.
ACS Omega. 2021 Jan 4;6(2):1007-1029. doi: 10.1021/acsomega.0c04033. eCollection 2021 Jan 19.
6
Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media.
Nat Commun. 2018 Jun 12;9(1):2300. doi: 10.1038/s41467-018-04715-6.

本文引用的文献

1
An emerging dual collaborative strategy for high-performance tumor therapy with mesoporous silica nanotubes loaded with MnO.
J Mater Chem B. 2016 Dec 14;4(46):7406-7414. doi: 10.1039/c6tb01788f. Epub 2016 Nov 7.
2
Ordered Mesoporous Carbonaceous Materials with Tunable Surface Property for Enrichment of Hexachlorobenzene.
Langmuir. 2016 Oct 4;32(39):9922-9929. doi: 10.1021/acs.langmuir.6b02258. Epub 2016 Sep 19.
4
Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity.
ACS Appl Mater Interfaces. 2016 May 25;8(20):13051-7. doi: 10.1021/acsami.6b02829. Epub 2016 May 11.
5
Enzyme immobilization on a nanoadsorbent for improved stability against heavy metal poisoning.
Colloids Surf B Biointerfaces. 2016 Aug 1;144:135-142. doi: 10.1016/j.colsurfb.2016.04.003. Epub 2016 Apr 5.
6
Enzyme Shielding in an Enzyme-thin and Soft Organosilica Layer.
Angew Chem Int Ed Engl. 2016 May 17;55(21):6285-9. doi: 10.1002/anie.201600590. Epub 2016 Apr 9.
7
Enzymes as Green Catalysts for Precision Macromolecular Synthesis.
Chem Rev. 2016 Feb 24;116(4):2307-413. doi: 10.1021/acs.chemrev.5b00472. Epub 2016 Jan 21.
8
Multifunctional Silica Nanoparticles for Covalent Immobilization of Highly Sensitive Proteins.
Adv Mater. 2015 Dec 22;27(48):7945-50. doi: 10.1002/adma.201503935. Epub 2015 Nov 17.
9
A general strategy for fabricating flexible magnetic silica nanofibrous membranes with multifunctionality.
Chem Commun (Camb). 2015 Aug 14;51(63):12521-4. doi: 10.1039/c5cc03718b.
10
Highly compressible 3D periodic graphene aerogel microlattices.
Nat Commun. 2015 Apr 22;6:6962. doi: 10.1038/ncomms7962.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验