Hill T L
Proc Natl Acad Sci U S A. 1977 Oct;74(10):4111-5. doi: 10.1073/pnas.74.10.4111.
This paper continues an earlier one [Hill, T.L. (1977) Proc. Natl . Acad. Sci. USA 74, 3632-3632] and presents further introductory examples. Most attention is devoted to a closed linear chain of two-state enzyme molecules with nearest-neighbor interactions. The one-dimensional Ising theory can be used here. The Bragg-Williams (mean field) approximation is introduced to deal with a one-, two-, or three-dimensional lattice of enzyme molecules, at steady state, with an arbitrary kinetic diagram. The behavior of the flux in a phase transition is noted. Finally, a treatment is given for the first effect (second "viral" coefficient) of interactions on the flux in a dilute solution of two-state enzyme molecules.
本文延续了之前的一篇论文[希尔,T.L.(1977年)《美国国家科学院院刊》74卷,第3632 - 3632页],并给出了更多的入门示例。大部分注意力集中在具有最近邻相互作用的双态酶分子的封闭线性链上。这里可以使用一维伊辛理论。引入布拉格 - 威廉姆斯(平均场)近似来处理处于稳态、具有任意动力学图的酶分子的一维、二维或三维晶格。文中指出了相变中通量的行为。最后,对双态酶分子稀溶液中相互作用对通量的一阶效应(第二个“病毒”系数)进行了处理。