Suppr超能文献

用于牵制控制的动态网络结构优化

Optimizing Dynamical Network Structure for Pinning Control.

作者信息

Orouskhani Yasin, Jalili Mahdi, Yu Xinghuo

机构信息

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Department of Electrical and Computer Engineering, School of Engineering, RMIT University, Melbourne, Australia.

出版信息

Sci Rep. 2016 Apr 12;6:24252. doi: 10.1038/srep24252.

Abstract

Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

摘要

将网络从任何初始状态控制到最终期望状态在从工程到生物学和社会科学的不同学科中都有许多应用。在这项工作中,我们针对牵制控制优化网络结构。该问题被表述为四个优化任务:i)优化驱动节点的位置,ii)优化反馈增益,iii)同时优化驱动节点的位置和反馈增益,以及iv)优化连接权重。一种新开发的基于种群的优化技术(猫群优化)被用作优化方法。为了验证这些方法,我们使用了真实世界网络以及模型无标度网络和小世界网络。大量的仿真结果表明,驱动节点的最优放置显著优于启发式方法,包括基于各种中心性度量(度、介数、接近度和聚类系数)来放置驱动节点。通过优化反馈增益,牵制可控性得到进一步提高。我们还表明,通过优化连接权重可以显著提高可控性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c5/4828652/bb533cac4aea/srep24252-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验