Suppr超能文献

优化有向复杂网络控制能量的目标节点选择。

Optimizing target nodes selection for the control energy of directed complex networks.

机构信息

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.

出版信息

Sci Rep. 2020 Oct 22;10(1):18112. doi: 10.1038/s41598-020-75101-w.

Abstract

The energy needed in controlling a complex network is a problem of practical importance. Recent works have focused on the reduction of control energy either via strategic placement of driver nodes, or by decreasing the cardinality of nodes to be controlled. However, optimizing control energy with respect to target nodes selection has yet been considered. In this work, we propose an iterative method based on Stiefel manifold optimization of selectable target node matrix to reduce control energy. We derive the matrix derivative gradient needed for the search algorithm in a general way, and search for target nodes which result in reduced control energy, assuming that driver nodes placement is fixed. Our findings reveal that the control energy is optimal when the path distances from driver nodes to target nodes are minimized. We corroborate our algorithm with extensive simulations on elementary network topologies, random and scale-free networks, as well as various real networks. The simulation results show that the control energy found using our algorithm outperforms heuristic selection strategies for choosing target nodes by a few orders of magnitude. Our work may be applicable to opinion networks, where one is interested in identifying the optimal group of individuals that the driver nodes can influence.

摘要

控制复杂网络所需的能量是一个具有实际重要性的问题。最近的研究工作集中在通过战略放置驱动节点或减少要控制的节点数量来降低控制能量。然而,针对目标节点选择来优化控制能量的问题尚未得到考虑。在这项工作中,我们提出了一种基于 Stiefel 流形优化的可选择目标节点矩阵的迭代方法,以降低控制能量。我们以一般的方式推导出了搜索算法所需的矩阵导数梯度,并搜索了控制能量降低的目标节点,假设驱动节点的放置是固定的。我们的研究结果表明,当从驱动节点到目标节点的路径距离最小时,控制能量是最优的。我们在基本网络拓扑、随机网络和无标度网络以及各种真实网络上进行了广泛的模拟,验证了我们的算法。模拟结果表明,我们的算法所找到的控制能量比选择目标节点的启发式选择策略要好几个数量级。我们的工作可能适用于意见网络,在这种网络中,人们感兴趣的是确定驱动节点可以影响的最佳个体组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae19/7581767/bbc82ac41252/41598_2020_75101_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验