Li Kaiwen, Yang Liufei, Guan Chun, Leng Siyang
Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China.
Heliyon. 2024 Jul 8;10(14):e34065. doi: 10.1016/j.heliyon.2024.e34065. eCollection 2024 Jul 30.
Synchronization in complex networks is a ubiquitous and important phenomenon with implications in various fields. Excessive synchronization may lead to undesired consequences, making desynchronization techniques essential. Exploiting the Proximal Policy Optimization algorithm, this work studies reinforcement learning-based pinning control strategies for synchronization suppression in global coupling networks and two types of irregular coupling networks: the Watts-Strogatz small-world networks and the Barabási-Albert scale-free networks. We investigate the impact of the ratio of controlled nodes and the role of key nodes selected by the LeaderRank algorithm on the performance of synchronization suppression. Numerical results demonstrate the effectiveness of the reinforcement learning-based pinning control strategy in different coupling schemes of the complex networks, revealing a critical ratio of the pinned nodes and the superior performance of a newly proposed hybrid pinning strategy. The results provide valuable insights for suppressing and optimizing network synchronization behavior efficiently.
复杂网络中的同步是一种普遍存在且重要的现象,在各个领域都有影响。过度同步可能会导致不良后果,因此去同步技术至关重要。利用近端策略优化算法,这项工作研究了基于强化学习的牵制控制策略,用于全局耦合网络以及两种类型的不规则耦合网络(瓦茨 - 斯托加茨小世界网络和巴拉巴西 - 阿尔伯特无标度网络)中的同步抑制。我们研究了受控节点比例以及由LeaderRank算法选择的关键节点的作用对同步抑制性能的影响。数值结果证明了基于强化学习的牵制控制策略在复杂网络不同耦合方案中的有效性,揭示了被牵制节点的临界比例以及新提出的混合牵制策略的优越性能。这些结果为有效抑制和优化网络同步行为提供了有价值的见解。