Suppr超能文献

群体感应失同步导致双峰性和模式化行为。

Quorum Sensing Desynchronization Leads to Bimodality and Patterned Behaviors.

作者信息

Quan David N, Tsao Chen-Yu, Wu Hsuan-Chen, Bentley William E

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America.

Institute for Bioscience and Biotechnology Research, College Park, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2016 Apr 12;12(4):e1004781. doi: 10.1371/journal.pcbi.1004781. eCollection 2016 Apr.

Abstract

Quorum Sensing (QS) drives coordinated phenotypic outcomes among bacterial populations. Its role in mediating infectious disease has led to the elucidation of numerous autoinducers and their corresponding QS signaling pathways. Among them, the Lsr (LuxS-regulated) QS system is conserved in scores of bacteria, and its signal molecule, autoinducer-2 (AI-2), is synthesized as a product of 1-carbon metabolism. Lsr signal transduction processes, therefore, may help organize population scale activities in numerous bacterial consortia. Conceptions of how Lsr QS organizes population scale behaviors remain limited, however. Using mathematical simulations, we examined how desynchronized Lsr QS activation, arising from cell-to-cell population heterogeneity, could lead to bimodal Lsr signaling and fractional activation. This has been previously observed experimentally. Governing these processes are an asynchronous AI-2 uptake, where positive intracellular feedback in Lsr expression is combined with negative feedback between cells. The resulting activation patterns differ from that of the more widely studied LuxIR system, the topology of which consists of only positive feedback. To elucidate differences, both QS systems were simulated in 2D, where cell populations grow and signal each other via traditional growth and diffusion equations. Our results demonstrate that the LuxIR QS system produces an 'outward wave' of autoinduction, and the Lsr QS system yields dispersed autoinduction from spatially-localized secretion and uptake profiles. In both cases, our simulations mirror previously demonstrated experimental results. As a whole, these models inform QS observations and synthetic biology designs.

摘要

群体感应(QS)驱动细菌群体间的协调表型结果。其在介导传染病中的作用促使人们阐明了众多自诱导物及其相应的QS信号通路。其中,Lsr(受LuxS调控)QS系统在许多细菌中保守存在,其信号分子自诱导物-2(AI-2)是一碳代谢的产物。因此,Lsr信号转导过程可能有助于组织众多细菌群落中的群体规模活动。然而,关于Lsr QS如何组织群体规模行为的概念仍然有限。我们通过数学模拟研究了由细胞间群体异质性引起的不同步Lsr QS激活如何导致双峰Lsr信号传导和部分激活。这一点先前已通过实验观察到。控制这些过程的是异步AI-2摄取,其中Lsr表达中的正向细胞内反馈与细胞间的负向反馈相结合。由此产生的激活模式与研究更广泛的LuxIR系统不同,后者的拓扑结构仅由正反馈组成。为了阐明差异,我们在二维空间中对这两种QS系统进行了模拟,细胞群体通过传统的生长和扩散方程相互生长并发出信号。我们的结果表明,LuxIR QS系统产生自诱导的“向外波”,而Lsr QS系统从空间局部化的分泌和摄取模式产生分散的自诱导。在这两种情况下,我们的模拟都反映了先前证明的实验结果。总体而言,这些模型为QS观察和合成生物学设计提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c4/4829230/8ddb563fe8ac/pcbi.1004781.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验