Della Pia Ada, Riello Massimo, Lawrence James, Stassen Daphne, Jones Tim S, Bonifazi Davide, De Vita Alessandro, Costantini Giovanni
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
Department of Physics, King's College London, Strand, London, WC2R 2LS, UK.
Chemistry. 2016 Jun 6;22(24):8105-12. doi: 10.1002/chem.201600368. Epub 2016 Apr 13.
Two-dimensional metal-organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene-4,5,9,10-tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of an extended metal-organic supramolecular structure. Each copper adatom coordinates to two ketone ligands of two neighbouring PTO molecules, forming chains that are linked together into large islands through secondary van der Waals interactions. Deposition of iron atoms leads to a transformation of this assembly resulting from the substitution of the metal centres. Density functional theory calculations reveal that the driving force for the metal substitution is primarily determined by the strength of the ketone-metal bond, which is higher for Fe than for Cu. This second class of nanostructures displays a structural dependence on the rate of iron deposition.
通过将芘 - 4,5,9,10 - 四酮(PTO)分子沉积在Cu(111)表面,制备了基于酮基与金属原子结合的二维金属有机纳米结构。强电负性的酮部分与来自基底的铜吸附原子或共沉积的铁原子结合。在前一种情况下,扫描隧道显微镜图像显示出扩展的金属有机超分子结构的形成。每个铜吸附原子与两个相邻PTO分子的两个酮配体配位,形成链,这些链通过二次范德华相互作用连接在一起形成大的岛状结构。铁原子的沉积导致由于金属中心的取代而使这种组装发生转变。密度泛函理论计算表明,金属取代的驱动力主要由酮 - 金属键的强度决定,Fe的酮 - 金属键强度高于Cu。这第二类纳米结构显示出对铁沉积速率的结构依赖性。