Hofmann O T, Glowatzki H, Bürker C, Rangger G M, Bröker B, Niederhausen J, Hosokai T, Salzmann I, Blum R-P, Rieger R, Vollmer A, Rajput P, Gerlach A, Müllen K, Schreiber F, Zojer E, Koch N, Duhm S
Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
J Phys Chem C Nanomater Interfaces. 2017 Nov 9;121(44):24657-24668. doi: 10.1021/acs.jpcc.7b08451. Epub 2017 Oct 27.
The adsorption of molecular acceptors is a viable method for tuning the work function of metal electrodes. This, in turn, enables adjusting charge injection barriers between the electrode and organic semiconductors. Here, we demonstrate the potential of pyrene-tetraone (PyT) and its derivatives dibromopyrene-tetraone (Br-PyT) and dinitropyrene-tetraone (NO-PyT) for modifying the electronic properties of Au(111) and Ag(111) surfaces. The systems are investigated by complementary theoretical and experimental approaches, including photoelectron spectroscopy, the X-ray standing wave technique, and density functional theory simulations. For some of the investigated interfaces the trends expected for Fermi-level pinning are observed, i.e., an increase of the metal work function along with increasing molecular electron affinity and the same work function for Au and Ag with monolayer acceptor coverage. Substantial deviations are, however, found for Br-PyT/Ag(111) and NO-PyT/Ag(111), where in the latter case an adsorption-induced work function increase of as much as 1.6 eV is observed. This behavior is explained as arising from a face-on to edge-on reorientation of molecules in the monolayer. Our calculations show that for an edge-on orientation much larger work-function changes can be expected despite the prevalence of Fermi-level pinning. This is primarily ascribed to a change of the electron affinity of the adsorbate layer that results from a change of the molecular orientation. This work provides a comprehensive understanding of how changing the molecular electron affinity as well as the adsorbate structure impacts the electronic properties of electrodes.
分子受体的吸附是调节金属电极功函数的一种可行方法。这进而能够调整电极与有机半导体之间的电荷注入势垒。在此,我们展示了芘四酮(PyT)及其衍生物二溴芘四酮(Br-PyT)和二硝基芘四酮(NO-PyT)在修饰Au(111)和Ag(111)表面电子性质方面的潜力。通过包括光电子能谱、X射线驻波技术和密度泛函理论模拟在内的互补理论和实验方法对这些体系进行了研究。对于一些所研究的界面,观察到了费米能级钉扎预期的趋势,即金属功函数随着分子电子亲和性的增加而增加,并且对于具有单层受体覆盖的Au和Ag具有相同的功函数。然而,在Br-PyT/Ag(111)和NO-PyT/Ag(111)中发现了显著偏差,在后一种情况下观察到吸附诱导的功函数增加高达1.6 eV。这种行为被解释为源于单层中分子从面朝上到边缘朝上的重新取向。我们的计算表明,尽管存在费米能级钉扎,但对于边缘朝上的取向,可以预期更大的功函数变化。这主要归因于由于分子取向的变化导致吸附层电子亲和性的改变。这项工作全面理解了改变分子电子亲和性以及吸附质结构如何影响电极的电子性质。