Department of Physics, King's College London , London, Strand WC2R 2LS, United Kingdom.
ACS Nano. 2013 Sep 24;7(9):8059-65. doi: 10.1021/nn403274s. Epub 2013 Aug 28.
The performance of modern organic electronic devices is often determined by the electronic level alignment at a metal-organic interface. This property can be controlled by introducing an interfacial electrostatic dipole via the insertion of a stable interlayer between the metallic and the organic phases. Here, we use density functional theory to investigate the electrostatic properties of an assembled structure formed by alkali metals coadsorbed with 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on a Ag(100) substrate. We find that the interfacial dipole buildup is regulated by the interplay of adsorption energetics, steric constraints and charge transfer effects, so that choosing chemical substitutions within TCNQ and different alkali metals provides a rich playground to control the systems' electrostatics and in particular fine-tune its work-function shift.
现代有机电子器件的性能通常取决于金属-有机界面处的电子能级排列。通过在金属和有机相之间插入稳定的夹层,可以通过引入界面静电偶极来控制该性质。在这里,我们使用密度泛函理论研究了由碱金属共吸附与 7,7,8,8-四氰基对醌二甲烷(TCNQ)分子在 Ag(100)衬底上形成的组装结构的静电特性。我们发现,界面偶极子的形成受吸附能、空间位阻和电荷转移效应的相互作用调节,因此,在 TCNQ 内和不同的碱金属中进行化学取代提供了一个丰富的游乐场,可以控制系统的静电特性,特别是精细调整其功函数的偏移。