Trevino Andrea C, Jesteadt Walt, Neely Stephen T
Boys Town National Research Hospital, Omaha, USA.
Adv Exp Med Biol. 2016;894:155-164. doi: 10.1007/978-3-319-25474-6_17.
Loudness is a suprathreshold percept that provides insight into the status of the entire auditory pathway. Individuals with matched thresholds can show individual variability in their loudness perception that is currently not well understood. As a means to analyze and model listener variability, we introduce the multi-category psychometric function (MCPF), a novel representation for categorical data that fully describes the probabilistic relationship between stimulus level and categorical-loudness perception. We present results based on categorical loudness scaling (CLS) data for adults with normal-hearing (NH) and hearing loss (HL). We show how the MCPF can be used to improve CLS estimates, by combining listener models with maximum-likelihood (ML) estimation. We also describe how the MCPF could be used in an entropy-based stimulus-selection technique. These techniques utilize the probabilistic nature of categorical perception, a novel usage of this dimension of loudness information, to improve the quality of loudness measurements.
响度是一种阈上感知,可洞察整个听觉通路的状态。阈值匹配的个体在响度感知上可能表现出个体差异,目前对此尚未完全理解。作为分析和模拟听者变异性的一种方法,我们引入了多类别心理测量函数(MCPF),这是一种用于分类数据的新颖表示方法,它全面描述了刺激水平与分类响度感知之间的概率关系。我们展示了基于正常听力(NH)和听力损失(HL)成年人的分类响度标度(CLS)数据得出的结果。我们展示了如何通过将听者模型与最大似然(ML)估计相结合,利用MCPF来改进CLS估计。我们还描述了MCPF如何用于基于熵的刺激选择技术。这些技术利用了分类感知的概率性质,这是响度信息这一维度的一种新颖应用,以提高响度测量的质量。