Suppr超能文献

神经胶质细胞质膜转运体:谷氨酸能神经传递中的关键角色。

Glia plasma membrane transporters: Key players in glutamatergic neurotransmission.

作者信息

Flores-Méndez Marco, Mendez-Flores Orquidia G, Ortega Arturo

机构信息

Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF 07360, Mexico.

Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF 07360, Mexico.

出版信息

Neurochem Int. 2016 Sep;98:46-55. doi: 10.1016/j.neuint.2016.04.004. Epub 2016 Apr 13.

Abstract

Glutamate, the main excitatory amino acid in the central nervous system, elicits its functions through the activation of specific membrane receptors that are expressed in neurons and glial cells. The re-cycling of this amino acid is carried out mostly through a continuous interplay between neurons and glia cells, given the fact that the removal of glutamate from the synaptic cleft depends mainly on glial glutamate transporters. Therefore, a functional and physical interaction between membrane transporters links glutamate uptake, transformation to glutamine and its release to the extra-synaptic space and its uptake to the pre-synaptic terminal. This sequence of events, best known as the glutamate/glutamine shuttle is central to glutamatergic transmission. In this sense, the uptake process triggers a complex series of biochemical cascades that modify the physiology of glial cells in the immediate, short and long term so as to be capable to take up, transform and release these amino acids in a regulated amount and in an appropriate time frame to sustain glutamatergic neurotransmission. Among the signaling cascades activated in glial cells by glutamate transporters, a sustained Na(+) and Ca(2+) influx, protein posttranslational modifications and gene expression regulation at the transcriptional and translational levels are present. Therefore, it is clear that the pivotal role of glial cells in the context of excitatory transmission has been constantly underestimated.

摘要

谷氨酸是中枢神经系统中的主要兴奋性氨基酸,它通过激活神经元和神经胶质细胞中表达的特定膜受体来发挥其功能。鉴于从突触间隙清除谷氨酸主要依赖于神经胶质谷氨酸转运体,这种氨基酸的再循环主要通过神经元和神经胶质细胞之间持续的相互作用来进行。因此,膜转运体之间的功能和物理相互作用将谷氨酸的摄取、转化为谷氨酰胺、释放到突触外空间以及摄取到突触前终末联系起来。这一系列事件,最为人所知的是谷氨酸/谷氨酰胺循环,对于谷氨酸能传递至关重要。从这个意义上说,摄取过程触发了一系列复杂的生化级联反应,这些反应在即刻、短期和长期内改变神经胶质细胞的生理状态,从而使其能够在规定的量和适当的时间范围内摄取、转化和释放这些氨基酸,以维持谷氨酸能神经传递。在谷氨酸转运体激活神经胶质细胞中所引发的信号级联反应中,存在持续的Na(+)和Ca(2+)内流、蛋白质翻译后修饰以及转录和翻译水平的基因表达调控。因此,很明显,神经胶质细胞在兴奋性传递过程中的关键作用一直被低估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验