Suárez-Pozos Edna, Chi-Castañeda Donají, Ortega Arturo
Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
Soluciones para un México Verde S.A. de C.V, Ciudad de México, 01210, Mexico.
Adv Neurobiol. 2017;16:185-198. doi: 10.1007/978-3-319-55769-4_9.
One of the most important processes of the synaptic transmission is neurotransmitter uptake, which is critical for the good performance of the nervous system by maintaining the neurotransmitter's baseline levels after its release. The major excitatory neurotransmitter in the central nervous system is glutamate; its extracellular levels are tightly regulated through high-affinity plasma membrane transporters. Most of the brain glutamate uptake activity is carried out by glial transporters that until recently have been regarded as important for the recycling of this excitatory amino acid. Besides, a role in the prevention of an overstimulation of neuronal glutamate receptors that would be linked to cell death has been established. Nevertheless, the Na dependence of the uptake process paved the way to the plausible triggering of signal transduction cascades. Over the past decade a considerable amount of evidences suggesting an important intervention of these transporter proteins in glutamate signaling, mainly in glial cells, has been accumulated. Herein we provide a summary or the most important findings in this novel function of glial glutamate transporters as signal transduction entities, as the framework platform through which they may actively participate in glutamate-mediated transactions in the central nervous system.
突触传递最重要的过程之一是神经递质摄取,它通过在神经递质释放后维持其基线水平,对神经系统的良好运作至关重要。中枢神经系统中的主要兴奋性神经递质是谷氨酸;其细胞外水平通过高亲和力质膜转运体受到严格调控。大脑中大部分谷氨酸摄取活性是由胶质转运体完成的,直到最近,这些转运体一直被认为对这种兴奋性氨基酸的再循环很重要。此外,已经证实其在预防与细胞死亡相关的神经元谷氨酸受体过度刺激方面发挥作用。然而,摄取过程对钠的依赖性为信号转导级联反应的可能触发铺平了道路。在过去十年中,大量证据表明这些转运蛋白在谷氨酸信号传导中起着重要作用,主要是在胶质细胞中。在此,我们总结了胶质谷氨酸转运体作为信号转导实体这一新功能的最重要发现,作为它们可能积极参与中枢神经系统中谷氨酸介导的相互作用的框架平台。