Suppr超能文献

一目了然的乳腺癌转移特征。

Signatures of breast cancer metastasis at a glance.

作者信息

Karagiannis George S, Goswami Sumanta, Jones Joan G, Oktay Maja H, Condeelis John S

机构信息

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

J Cell Sci. 2016 May 1;129(9):1751-8. doi: 10.1242/jcs.183129. Epub 2016 Apr 15.

Abstract

Gene expression profiling has yielded expression signatures from which prognostic tests can be derived to facilitate clinical decision making in breast cancer patients. Some of these signatures are based on profiling of whole tumor tissue (tissue signatures), which includes all tumor and stromal cells. Prognostic markers have also been derived from the profiling of metastasizing tumor cells, including circulating tumor cells (CTCs) and migratory-disseminating tumor cells within the primary tumor. The metastasis signatures based on CTCs and migratory-disseminating tumor cells have greater potential for unraveling cell biology insights and mechanistic underpinnings of tumor cell dissemination and metastasis. Of clinical interest is the promise that stratification of patients into high or low metastatic risk, as well as assessing the need for cytotoxic therapy, might be improved if prognostics derived from these two types of signatures are used in a combined way. The aim of this Cell Science at a Glance article and accompanying poster is to navigate through both types of signatures and their derived prognostics, as well as to highlight biological insights and clinical applications that could be derived from them, especially when they are used in combination.

摘要

基因表达谱分析已产生了表达特征,从中可衍生出预后检测方法,以辅助乳腺癌患者的临床决策。其中一些特征基于全肿瘤组织的分析(组织特征),全肿瘤组织包括所有肿瘤细胞和基质细胞。预后标志物也已从转移肿瘤细胞的分析中得出,包括循环肿瘤细胞(CTC)和原发肿瘤内的迁移播散肿瘤细胞。基于CTC和迁移播散肿瘤细胞的转移特征在揭示肿瘤细胞播散和转移的细胞生物学见解及机制基础方面具有更大潜力。临床关注的是,如果联合使用从这两种特征衍生出的预后指标,可能会改善将患者分层为高转移风险或低转移风险的情况,以及评估细胞毒性治疗的必要性。这篇“一目了然的细胞科学”文章及随附海报的目的是梳理这两种特征及其衍生的预后指标,同时突出可从它们得出的生物学见解和临床应用,尤其是当它们联合使用时。

相似文献

1
Signatures of breast cancer metastasis at a glance.
J Cell Sci. 2016 May 1;129(9):1751-8. doi: 10.1242/jcs.183129. Epub 2016 Apr 15.
2
Identification of genomic signatures in circulating tumor cells from breast cancer.
Int J Cancer. 2015 Jul 15;137(2):332-44. doi: 10.1002/ijc.29399. Epub 2015 Jan 12.
5
Correlation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patients.
Clin Transl Oncol. 2015 Jul;17(7):539-46. doi: 10.1007/s12094-015-1275-1. Epub 2015 Jan 23.
7
Circulating Tumor Cells.
Adv Exp Med Biol. 2016;882:235-58. doi: 10.1007/978-3-319-22909-6_10.
8
Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients.
Acta Oncol. 2011 Jun;50(5):700-10. doi: 10.3109/0284186X.2010.549151. Epub 2011 Jan 24.
10
Molecular Profiling and Significance of Circulating Tumor Cell Based Genetic Signatures.
Adv Exp Med Biol. 2017;994:143-167. doi: 10.1007/978-3-319-55947-6_8.

引用本文的文献

1
Real-world data of CanAssist Breast- first immunohistochemistry and AI-based prognostic test.
Sci Rep. 2025 Aug 19;15(1):30430. doi: 10.1038/s41598-025-15736-9.
3
Enabling tumor-specific drug delivery by targeting the Warburg effect of cancer.
Cell Rep Med. 2025 Jan 21;6(1):101920. doi: 10.1016/j.xcrm.2024.101920. Epub 2025 Jan 13.
4
Cost-Utility Analysis of Multigene Assays to Guide Treatment Decisions for Node-Negative Early Breast Cancer.
Oncol Ther. 2025 Mar;13(1):99-114. doi: 10.1007/s40487-024-00312-4. Epub 2024 Nov 22.
6
Breast cancer genomic analyses reveal genes, mutations, and signaling networks.
Funct Integr Genomics. 2024 Nov 4;24(6):206. doi: 10.1007/s10142-024-01484-y.
7
A new Neu-a syngeneic model of spontaneously metastatic HER2-positive breast cancer.
Clin Exp Metastasis. 2024 Oct;41(5):733-746. doi: 10.1007/s10585-024-10289-z. Epub 2024 May 8.
8
MiR-103a-3p Promotes Tumorigenesis of Breast Cancer by Targeting ETNK1.
Iran J Public Health. 2024 Jan;53(1):208-218. doi: 10.18502/ijph.v53i1.14697.

本文引用的文献

1
Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells.
Nature. 2015 Oct 1;526(7571):131-5. doi: 10.1038/nature15260. Epub 2015 Sep 23.
2
Prospective Validation of a 21-Gene Expression Assay in Breast Cancer.
N Engl J Med. 2015 Nov 19;373(21):2005-14. doi: 10.1056/NEJMoa1510764. Epub 2015 Sep 27.
3
PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.
Mol Biol Cell. 2015 Nov 1;26(21):3867-78. doi: 10.1091/mbc.E15-06-0442. Epub 2015 Sep 2.
4
Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy.
Cancer Res. 2015 Sep 1;75(17):3479-91. doi: 10.1158/0008-5472.CAN-14-3587. Epub 2015 Aug 12.
6
Transcriptome analysis of basal and luminal tumor-initiating cells in ErbB2-driven breast cancer.
Genom Data. 2015 Jun 1;4:119-122. doi: 10.1016/j.gdata.2015.04.008.
8
The relevance of EMT in breast cancer metastasis: Correlation or causality?
FEBS Lett. 2015 Jun 22;589(14):1577-87. doi: 10.1016/j.febslet.2015.05.002. Epub 2015 May 12.
9
Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer.
PLoS Comput Biol. 2015 May 15;11(5):e1004199. doi: 10.1371/journal.pcbi.1004199. eCollection 2015 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验