Suppr超能文献

CanAssist Breast首次免疫组织化学和基于人工智能的预后检测的真实世界数据。

Real-world data of CanAssist Breast- first immunohistochemistry and AI-based prognostic test.

作者信息

Durgekar Tejal Deepak, Sunder Manvi, Savitha Badada Ananthamurthy, Shrivastava Payal, Bhagat Rahul, Krishnamoorthy Naveen, Shivashimpi Deepti K, Bakre Manjiri

机构信息

OncoStem Diagnostics Private Limited, 4, Raja Ram Mohan Roy Road, Aanand Towers, 2nd Floor, Bangalore, Karnataka, 560027, India.

出版信息

Sci Rep. 2025 Aug 19;15(1):30430. doi: 10.1038/s41598-025-15736-9.

Abstract

CanAssist Breast (CAB), an immunohistochemistry (IHC) and artificial intelligence-based prognostic test, was developed on Hormone receptor-positive (HR +), HER2/neu-negative (HER2-) breast tumors from Indian patients and validated in retrospective global studies. CAB combines the expression of five protein biomarkers with three clinical parameters to segregate patients as low-risk (LR) or high-risk (HR) for distant recurrence. CAB has been in clinical use in South Asia, UAE, Turkey, and Iran for the last 8 years on > 7000 Early breast cancer (EBC) patients. Here we showcase for the first time, the real-world data on the usefulness of CAB to prognosticate across different clinicopathological parameters, histological types, and impact on treatment planning by analysing CAB usage in 5926 patients diagnosed from mid-2016 to 2024. Overall, CAB stratified 72% of patients as LR and 28% as HR for distant recurrence. Interestingly, CAB showed meaningful differences in HR proportions across different histological types; 19% and 29% in mucinous versus mixed mucinous, while 26% and 50% in papillary and micropapillary carcinomas, respectively. In the intermediate Ki67 group, CAB segregated 77% of patients as LR and 23% as HR. In conclusion, CAB is a first-of-its-kind prognostic test that serves as a cost-effective, suitable alternative to Western prognostic tests.

摘要

CanAssist乳腺检测(CAB)是一种基于免疫组织化学(IHC)和人工智能的预后检测方法,它是针对印度患者的激素受体阳性(HR +)、HER2/neu阴性(HER2 -)乳腺肿瘤开发的,并在回顾性全球研究中得到验证。CAB将五种蛋白质生物标志物的表达与三个临床参数相结合,将患者分为远处复发低风险(LR)或高风险(HR)。在过去8年里,CAB已在南亚、阿联酋、土耳其和伊朗用于超过7000例早期乳腺癌(EBC)患者的临床治疗。在此,我们首次展示了关于CAB在不同临床病理参数、组织学类型下预测预后的实际数据,以及通过分析2016年年中至2024年诊断的5926例患者的CAB使用情况,其对治疗计划的影响。总体而言,CAB将72%的患者分层为远处复发低风险,28%为高风险。有趣的是,CAB在不同组织学类型的高风险比例上显示出有意义的差异;黏液性癌与混合黏液性癌分别为19%和29%,而乳头状癌和微乳头状癌分别为26%和50%。在Ki67中等水平组中,CAB将77%的患者分层为低风险,23%为高风险。总之,CAB是同类预后检测中的首个产品,是一种经济高效的、适合替代西方预后检测的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验