Suppr超能文献

适应性剂量探索研究中模型参数空间的维度及操作特征

Dimension of model parameter space and operating characteristics in adaptive dose-finding studies.

作者信息

Iasonos Alexia, Wages Nolan A, Conaway Mark R, Cheung Ken, Yuan Ying, O'Quigley John

机构信息

Memorial Sloan Kettering Cancer Center, New York, NY, U.S.A.

Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, U.S.A.

出版信息

Stat Med. 2016 Sep 20;35(21):3760-75. doi: 10.1002/sim.6966. Epub 2016 Apr 18.

Abstract

Adaptive, model-based, dose-finding methods, such as the continual reassessment method, have been shown to have good operating characteristics. One school of thought argues in favor of the use of parsimonious models, not modeling all aspects of the problem, and using a strict minimum number of parameters. In particular, for the standard situation of a single homogeneous group, it is common to appeal to a one-parameter model. Other authors argue for a more classical approach that models all aspects of the problem. Here, we show that increasing the dimension of the parameter space, in the context of adaptive dose-finding studies, is usually counter productive and, rather than leading to improvements in operating characteristics, the added dimensionality is likely to result in difficulties. Among these are inconsistency of parameter estimates, lack of coherence in escalation or de-escalation, erratic behavior, getting stuck at the wrong level, and, in almost all cases, poorer performance in terms of correct identification of the targeted dose. Our conclusions are based on both theoretical results and simulations. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

基于模型的适应性剂量探索方法,如连续重新评估法,已被证明具有良好的操作特性。一种观点主张使用简约模型,即不对问题的所有方面进行建模,而是使用严格最少数量的参数。特别是对于单一同质群体的标准情况,采用单参数模型很常见。其他作者则主张采用更经典的方法,对问题的所有方面进行建模。在此,我们表明,在适应性剂量探索研究的背景下,增加参数空间的维度通常会适得其反,不仅不会改善操作特性,增加的维度还可能导致各种困难。其中包括参数估计的不一致性、剂量递增或递减缺乏连贯性、行为不稳定、在错误水平停滞不前,而且在几乎所有情况下,在正确识别目标剂量方面表现更差。我们的结论基于理论结果和模拟。版权所有© 2016约翰·威利父子有限公司。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b983/4965325/afe6feee8daa/nihms-794014-f0001.jpg

相似文献

8
Shift models for dose-finding in partially ordered groups.部分有序组中剂量探索的转换模型。
Clin Trials. 2019 Feb;16(1):32-40. doi: 10.1177/1740774518801599. Epub 2018 Oct 11.

引用本文的文献

6
Phase I clinical trials in adoptive T-cell therapies.过继性T细胞疗法的I期临床试验。
J R Stat Soc Ser C Appl Stat. 2021 Aug;70(4):815-834. doi: 10.1111/rssc.12485. Epub 2021 Mar 29.
7
Stopping rules for phase I clinical trials with dose expansion cohorts.具有剂量扩展队列的 I 期临床试验的停止规则。
Stat Methods Med Res. 2022 Feb;31(2):334-347. doi: 10.1177/09622802211064996. Epub 2021 Dec 24.
10
Coherence principles in interval-based dose finding.基于区间的剂量探索中的一致性原则。
Pharm Stat. 2020 Mar;19(2):137-144. doi: 10.1002/pst.1974. Epub 2019 Nov 6.

本文引用的文献

1
Dose expansion cohorts in Phase I trials.I期试验中的剂量扩展队列。
Stat Biopharm Res. 2016;8(2):161-170. doi: 10.1080/19466315.2015.1135185. Epub 2016 Jun 2.
2
Implementation of adaptive methods in early-phase clinical trials.早期临床试验中自适应方法的实施
Stat Med. 2017 Jan 30;36(2):215-224. doi: 10.1002/sim.6910. Epub 2016 Feb 29.
3
Sequential monitoring of Phase I dose expansion cohorts.对I期剂量扩展队列进行序贯监测。
Stat Med. 2017 Jan 30;36(2):204-214. doi: 10.1002/sim.6894. Epub 2016 Feb 7.
8
Continual reassessment method for partial ordering.偏序的连续重新评估方法
Biometrics. 2011 Dec;67(4):1555-63. doi: 10.1111/j.1541-0420.2011.01560.x. Epub 2011 Mar 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验