Suppr超能文献

DROID:肿瘤药物研发中优化剂量的剂量范围方法。

DROID: dose-ranging approach to optimizing dose in oncology drug development.

机构信息

Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana, USA.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Biometrics. 2023 Dec;79(4):2907-2919. doi: 10.1111/biom.13840. Epub 2023 Mar 6.

Abstract

In the era of targeted therapy, there has been increasing concern about the development of oncology drugs based on the "more is better" paradigm, developed decades ago for chemotherapy. Recently, the US Food and Drug Administration (FDA) initiated Project Optimus to reform the dose optimization and dose selection paradigm in oncology drug development. To accommodate this paradigm shifting, we propose a dose-ranging approach to optimizing dose (DROID) for oncology trials with targeted drugs. DROID leverages the well-established dose-ranging study framework, which has been routinely used to develop non-oncology drugs for decades, and bridges it with established oncology dose-finding designs to optimize the dose of oncology drugs. DROID consists of two seamlessly connected stages. In the first stage, patients are sequentially enrolled and adaptively assigned to investigational doses to establish the therapeutic dose range (TDR), defined as the range of doses with acceptable toxicity and efficacy profiles, and the recommended phase 2 dose set (RP2S). In the second stage, patients are randomized to the doses in RP2S to assess the dose-response relationship and identify the optimal dose. The simulation study shows that DROID substantially outperforms the conventional approach, providing a new paradigm to efficiently optimize the dose of targeted oncology drugs. DROID aligns with the approach of a randomized, parallel dose-response trial design recommended by the FDA in the Guidance on Optimizing the Dosage of Human Prescription Drugs and Biological Products for the Treatment of Oncologic Diseases.

摘要

在靶向治疗时代,人们越来越关注基于几十年前为化疗开发的“越多越好”范式的肿瘤药物的发展。最近,美国食品和药物管理局(FDA)启动了 Optimus 项目,以改革肿瘤药物开发中的剂量优化和选择范式。为了适应这一范式转变,我们提出了一种用于肿瘤药物临床试验的剂量优化方法(DROID)。DROID 利用了经过充分验证的剂量范围研究框架,该框架几十年来一直被用于开发非肿瘤药物,并将其与已建立的肿瘤剂量发现设计相结合,以优化肿瘤药物的剂量。DROID 由两个无缝连接的阶段组成。在第一阶段,患者按顺序入组,并适应性地分配到研究剂量,以确定治疗剂量范围(TDR),即具有可接受的毒性和疗效特征的剂量范围,以及推荐的 2 期剂量集(RP2S)。在第二阶段,患者随机分配到 RP2S 中的剂量,以评估剂量反应关系并确定最佳剂量。模拟研究表明,DROID 显著优于传统方法,为高效优化靶向肿瘤药物的剂量提供了一种新的范式。DROID 与 FDA 在《优化治疗肿瘤疾病的人用处方药和生物制品剂量的指南》中推荐的随机平行剂量反应试验设计方法一致。

相似文献

4
6
Dosage Optimization: A Regulatory Perspective for Developing Oncology Drugs.剂量优化:开发肿瘤药物的监管视角。
Clin Pharmacol Ther. 2024 Sep;116(3):577-591. doi: 10.1002/cpt.3373. Epub 2024 Jul 29.

引用本文的文献

6
Three steps toward dose optimization for oncology dose finding.肿瘤剂量探索中实现剂量优化的三个步骤。
Contemp Clin Trials Commun. 2024 Jun 24;40:101329. doi: 10.1016/j.conctc.2024.101329. eCollection 2024 Aug.

本文引用的文献

1
The Drug-Dosing Conundrum in Oncology - When Less Is More.肿瘤学中的给药难题——少即是多。
N Engl J Med. 2021 Oct 14;385(16):1445-1447. doi: 10.1056/NEJMp2109826. Epub 2021 Oct 9.
6
A Bayesian Phase I/II Trial Design for Immunotherapy.一种用于免疫疗法的贝叶斯 I/II 期试验设计。
J Am Stat Assoc. 2018;113(523):1016-1027. doi: 10.1080/01621459.2017.1383260. Epub 2018 Jun 28.
9
Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.新型 I 期临床试验设计的准确性、安全性和可靠性。
Clin Cancer Res. 2018 Sep 15;24(18):4357-4364. doi: 10.1158/1078-0432.CCR-18-0168. Epub 2018 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验