Damm Tobias, Schmitt Julian, Liang Qi, Dung David, Vewinger Frank, Weitz Martin, Klaers Jan
Institut für Angewandte Physik, Atominstitut, Institute of Quantum Electronics, Universität Bonn, Wegelerstrasse 8, 53115 Bonn, Germany.
Nat Commun. 2016 Apr 19;7:11340. doi: 10.1038/ncomms11340.
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level.
相变,比如气体凝结为液体,通常由热力学量的不连续行为揭示。例如,对于液氦,比热的发散标志着从正常流体到超流体状态的转变。除了液氦之外,事实证明,测定玻色气体的比热是一项具有挑战性的任务,比如对于超冷原子玻色气体。在这里,我们研究了捕获的二维光子气体的热力学行为,该系统使我们能够通过光谱法测定从经典高温到玻色凝聚量子区域的近理想玻色气体的比热和熵。比热的尖点奇异性清楚地揭示了相变处的临界行为。作为对量子统计力学的检验,我们的结果在微观层面与其预测显示出定量一致性。