de Jong Arthur P H, Meijer Marieke, Saarloos Ingrid, Cornelisse Lennart Niels, Toonen Ruud F G, Sørensen Jakob B, Verhage Matthijs
Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam 1081HV, The Netherlands;
Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam 1081HV, The Netherlands; Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam 1081HV, The Netherlands;
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5095-100. doi: 10.1073/pnas.1522927113. Epub 2016 Apr 18.
Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.
二酰甘油(DAG)/蛋白激酶C(PKC)途径的突触前激活是短期突触可塑性的核心事件。两种底物,Munc13-1和Munc18-1,对于DAG诱导的囊泡启动增强至关重要,但大多数突触前PKC底物的作用尚不清楚。在这里,我们表明,突触结合蛋白-1(Syt1(T112A))中的一个突变阻止了其PKC依赖性磷酸化,消除了海马神经元中DAG诱导的突触传递增强。该突变体还降低了自发释放的增强,但仅在不存在替代钙(Ca2+)传感器Doc2A/B蛋白时才会如此。然而,与阻止DAG诱导增强的Munc13-1或Munc18-1中的突变不同,突触结合蛋白-1突变不影响双脉冲易化。此外,探测囊泡启动的实验(强直刺激后的恢复和高渗溶液的双重应用)也未发现异常。缺乏包含突触结合蛋白-1磷酸化位点的七个氨基酸序列的突触结合蛋白-2的表达,或去除这七个残基的突触结合蛋白-1变体(Syt1(Δ109-116)),支持正常的DAG诱导增强。这些数据表明,位于跨膜和C2A结构域之间连接区的突触结合蛋白-1中的这七个残基序列在未磷酸化状态下具有抑制作用,磷酸化后则允许增强。我们得出结论,突触结合蛋白-1磷酸化是PKC依赖性突触传递增强的关键步骤,作用于另外两个关键的DAG/PKC底物Munc13-1和Munc18-1的下游。