Knöspel Fanny, Jacobs Frank, Freyer Nora, Damm Georg, De Bondt An, van den Wyngaert Ilse, Snoeys Jan, Monshouwer Mario, Richter Marco, Strahl Nadja, Seehofer Daniel, Zeilinger Katrin
Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
Janssen Research & Development, Beerse 2340, Belgium.
Int J Mol Sci. 2016 Apr 16;17(4):584. doi: 10.3390/ijms17040584.
Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.
准确预测新药物潜在的肝毒性本质仍然极具挑战性。因此,需要具有更高外部有效性的新型体外模型来研究肝脏代谢并及时识别药物在人体中的任何毒性。在本研究中,我们使用原代人肝细胞,在动态多隔室生物反应器中研究了双氯芬酸(一种在体内具有已知肝毒性风险的模型物质)的作用。评估了该药物的生物转化途径以及对代谢活性、形态和细胞转录组的可能影响。在暴露于300µM双氯芬酸的生物反应器(300µM生物反应器(300µM BR))中,双氯芬酸代谢物的形成速率在七天的应用期内相对稳定,而在暴露于1000µM双氯芬酸的生物反应器(1000µM BR)中,代谢物浓度急剧下降。生化数据显示乳酸产生显著减少,对于较高剂量,氨分泌显著增加,表明双氯芬酸应用具有剂量依赖性效应。进行的微阵列分析显示随着时间推移细胞具有稳定的肝表型,并且观察到的转录变化与系统的功能读数一致。总之,这些数据突出了生物反应器技术在体外研究药物肝毒性方面的适用性。