Suppr超能文献

凸稀疏谱聚类:从单视图到多视图

Convex Sparse Spectral Clustering: Single-View to Multi-View.

出版信息

IEEE Trans Image Process. 2016 Jun;25(6):2833-2843. doi: 10.1109/TIP.2016.2553459. Epub 2016 Apr 12.

Abstract

Spectral clustering (SC) is one of the most widely used methods for data clustering. It first finds a low-dimensional embedding U of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on U to get the final clustering result. In this paper, we observe that, in the ideal case, UU should be block diagonal and thus sparse. Therefore, we propose the sparse SC (SSC) method that extends the SC with sparse regularization on UU. To address the computational issue of the nonconvex SSC model, we propose a novel convex relaxation of SSC based on the convex hull of the fixed rank projection matrices. Then, the convex SSC model can be efficiently solved by the alternating direction method of multipliers Furthermore, we propose the pairwise SSC that extends SSC to boost the clustering performance by using the multi-view information of data. Experimental comparisons with several baselines on real-world datasets testify to the efficacy of our proposed methods.

摘要

谱聚类(SC)是数据聚类中应用最广泛的方法之一。它首先通过计算归一化拉普拉斯矩阵的特征向量来找到数据的低维嵌入U,然后对U执行k均值以获得最终的聚类结果。在本文中,我们观察到,在理想情况下,UU应该是块对角的,因此是稀疏的。因此,我们提出了稀疏SC(SSC)方法,该方法通过对UU进行稀疏正则化来扩展SC。为了解决非凸SSC模型的计算问题,我们基于固定秩投影矩阵的凸包提出了一种新颖的SSC凸松弛方法。然后,可以通过乘子交替方向法有效地求解凸SSC模型。此外,我们提出了成对SSC,它通过使用数据的多视图信息扩展SSC以提高聚类性能。在真实世界数据集上与几个基线的实验比较证明了我们提出的方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验