Hao Yonghong, Pan Chu, Chen WeiWei, Li Tao, Zhu WenZhen, Qi JianPin
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
J Magn Reson Imaging. 2016 Dec;44(6):1546-1555. doi: 10.1002/jmri.25290. Epub 2016 Apr 19.
To explore the usefulness of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) derived from reduced field-of-view (r-FOV) diffusion-weighted imaging (DWI) in differentiating malignant and benign thyroid nodules and stratifying papillary thyroid cancer (PTC) with aggressive histological features.
This Institutional Review Board-approved, retrospective study included 93 patients with 101 pathologically proven thyroid nodules. All patients underwent preoperative r-FOV DWI at 3T. The whole-lesion ADC assessments were performed for each patient. Histogram-derived ADC parameters between different subgroups (pathologic type, extrathyroidal extension, lymph node metastasis) were compared. Receiver operating characteristic curve analysis was used to determine optimal histogram parameters in differentiating benign and malignant nodules and predicting aggressiveness of PTC.
Mean ADC, median ADC, 5 percentile ADC, 25 percentile ADC, 75 percentile ADC, 95 percentile ADC (all P < 0.001), and kurtosis (P = 0.001) were significantly lower in malignant thyroid nodules, and mean ADC achieved the highest AUC (0.919) with a cutoff value of 1842.78 × 10 mm /s in differentiating malignant and benign nodules. Compared to the PTCs without extrathyroidal extension, PTCs with extrathyroidal extension showed significantly lower median ADC, 5 percentile ADC, and 25 percentile ADC. The 5 percentile ADC achieved the highest AUC (0.757) with cutoff value of 911.5 × 10 mm /s for differentiating between PTCs with and without extrathyroidal extension.
Whole-lesion ADC histogram analysis might help to differentiate malignant nodules from benign ones and show the PTCs with extrathyroidal extension. J. Magn. Reson. Imaging 2016;44:1546-1555.
探讨基于缩小视野(r-FOV)扩散加权成像(DWI)的表观扩散系数(ADC)全病灶直方图分析在鉴别甲状腺良恶性结节以及对具有侵袭性组织学特征的甲状腺乳头状癌(PTC)进行分层中的应用价值。
本研究经机构审查委员会批准,为回顾性研究,纳入93例患者共101个经病理证实的甲状腺结节。所有患者均在3T下行术前r-FOV DWI检查。对每位患者进行全病灶ADC评估。比较不同亚组(病理类型、甲状腺外侵犯、淋巴结转移)之间基于直方图的ADC参数。采用受试者操作特征曲线分析来确定鉴别良恶性结节以及预测PTC侵袭性的最佳直方图参数。
恶性甲状腺结节的平均ADC、中位数ADC、第5百分位数ADC、第25百分位数ADC、第75百分位数ADC、第95百分位数ADC(均P < 0.001)以及峰度(P = 0.001)均显著降低,在鉴别良恶性结节时,平均ADC的曲线下面积(AUC)最高(0.919),截断值为1842.78×10⁻⁶mm²/s。与无甲状腺外侵犯的PTC相比,有甲状腺外侵犯的PTC的中位数ADC、第5百分位数ADC和第25百分位数ADC显著降低。在鉴别有无甲状腺外侵犯的PTC时,第5百分位数ADC的AUC最高(0.757),截断值为911.5×10⁻⁶mm²/s。
全病灶ADC直方图分析可能有助于鉴别甲状腺良恶性结节,并显示有甲状腺外侵犯的PTC。《磁共振成像杂志》2016年;44:1546 - 1555。