Suppr超能文献

基于磁共振成像(MRI)的模型预测甲状腺乳头状癌术前甲状腺外侵犯情况

MRI-based model to predict preoperative extrathyroidal extension in papillary thyroid carcinoma.

作者信息

Chen Biaoling, Song Yining, Wang Hao, Tang Lang, Xie Xiaoli, Mao Anwei, Chen Qiaohui, Song Bin

机构信息

Department of Radiology, Minhang Hospital, Fudan University, Shanghai, China.

Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Eur Radiol. 2025 May 18. doi: 10.1007/s00330-025-11684-0.

Abstract

OBJECTIVE

This study aimed to develop and validate a predictive model for preoperative extrathyroidal extension (ETE) in papillary thyroid carcinoma (PTC) using MRI features.

METHODS

We retrospectively analyzed 140 confirmed PTC cases, divided into training (n = 84) and validation (n = 56) groups. MRI features such as T2-weighted imaging, multiphase contrast-enhanced MRI, and diffusion-weighted imaging were evaluated along with clinical data. Univariate and multivariate logistic regression identified independent predictors of ETE and developed a predictive nomogram. We evaluated the nomogram's discrimination, calibration, and clinical utility, and performed subgroup analyses to explore the relationships between risk factors and baseline data. Predictive performance was assessed using ROC curves and DeLong tests.

RESULTS

Age, protrusion value, and apparent diffusion coefficient_Brightest_rate (ADC_Best_rate) were independent predictors of ETE. The nomogram effectively differentiated ETE from no-ETE, showing strong discrimination, clinical utility, and calibration in both the training (AUC = 0.826, Hosmer-Lemeshow p = 0.882) and validation cohorts (AUC = 0.805, Hosmer-Lemeshow p = 0.585). The model performed consistently across different MRI systems (1.5 T and 3.0 T) and gender subgroups. Notably, ADC_Best_rate (AUC = 0.742) outperformed ADC_mean_rate and ADC_minimum_rate. A significant interaction between ADC_Best_rate and gender (p = 0.02) showed that ADC_Best_rate predicted ETE in PTC more accurately in males (AUC = 0.897) compared to females (AUC = 0.644).

CONCLUSION

Our nomogram model, incorporating age, protrusion value, and ADC_Best_rate, effectively predicted preoperative ETE in PTC patients, aiding surgeons in optimizing therapeutic decision-making. ADC_Best_rate may be a promising potential indicator in MRI functional imaging.

KEY POINTS

Question This study addresses the challenge of accurately predicting extrathyroidal extension (ETE) in papillary thyroid carcinoma (PTC) to improve surgical decision-making. Findings A predictive nomogram incorporating age, protrusion value, and ADC_Best_rate effectively differentiates ETE from no-ETE, showing strong performance in both training and validation cohorts. Clinical relevance This nomogram aids surgeons in identifying patients at risk for ETE, enhancing therapeutic decision-making and potentially improving patient outcomes in PTC management.

摘要

目的

本研究旨在利用MRI特征建立并验证一种预测甲状腺乳头状癌(PTC)术前甲状腺外侵犯(ETE)的模型。

方法

我们回顾性分析了140例确诊的PTC病例,分为训练组(n = 84)和验证组(n = 56)。评估了T2加权成像、多期对比增强MRI和扩散加权成像等MRI特征以及临床数据。单因素和多因素逻辑回归确定了ETE的独立预测因素,并建立了预测列线图。我们评估了列线图的区分度、校准度和临床实用性,并进行亚组分析以探讨危险因素与基线数据之间的关系。使用ROC曲线和德龙检验评估预测性能。

结果

年龄、突出值和表观扩散系数_最亮率(ADC_Best_rate)是ETE的独立预测因素。列线图有效地将ETE与非ETE区分开来,在训练组(AUC = 0.826,Hosmer-Lemeshow p = 0.882)和验证组(AUC = 0.805,Hosmer-Lemeshow p = 0.585)中均显示出很强的区分度、临床实用性和校准度。该模型在不同的MRI系统(1.5T和3.0T)和性别亚组中表现一致。值得注意的是,ADC_Best_rate(AUC = 0.742)的表现优于ADC_mean_rate和ADC_minimum_rate。ADC_Best_rate与性别之间存在显著交互作用(p = 0.02),表明与女性(AUC = 0.644)相比,ADC_Best_rate在男性PTC中预测ETE更准确(AUC = 0.897)。

结论

我们的列线图模型纳入了年龄、突出值和ADC_Best_rate,有效地预测了PTC患者的术前ETE,有助于外科医生优化治疗决策。ADC_Best_rate可能是MRI功能成像中有前景的潜在指标。

关键点

问题 本研究解决了准确预测甲状腺乳头状癌(PTC)甲状腺外侵犯(ETE)以改善手术决策的挑战。发现 纳入年龄、突出值和ADC_Best_rate的预测列线图有效地将ETE与非ETE区分开来,在训练组和验证组中均表现出强大性能。临床相关性 该列线图有助于外科医生识别有ETE风险的患者,加强治疗决策,并可能改善PTC管理中的患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验