Suppr超能文献

挖掘观测数据以进行更好的因果推断:预防研究的方法与实例

Squeezing observational data for better causal inference: Methods and examples for prevention research.

作者信息

Garcia-Huidobro Diego, Michael Oakes J

机构信息

Department of Family Medicine, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile.

Department of Family Social Science, University of Minnesota, Saint Paul, MN, USA.

出版信息

Int J Psychol. 2017 Apr;52(2):96-105. doi: 10.1002/ijop.12275. Epub 2016 Apr 20.

Abstract

Randomised controlled trials (RCTs) are typically viewed as the gold standard for causal inference. This is because effects of interest can be identified with the fewest assumptions, especially imbalance in background characteristics. Yet because conducting RCTs are expensive, time consuming and sometimes unethical, observational studies are frequently used to study causal associations. In these studies, imbalance, or confounding, is usually controlled with multiple regression, which entails strong assumptions. The purpose of this manuscript is to describe strengths and weaknesses of several methods to control for confounding in observational studies, and to demonstrate their use in cross-sectional dataset that use patient registration data from the Juan Pablo II Primary Care Clinic in La Pintana-Chile. The dataset contains responses from 5855 families who provided complete information on family socio-demographics, family functioning and health problems among their family members. We employ regression adjustment, stratification, restriction, matching, propensity score matching, standardisation and inverse probability weighting to illustrate the approaches to better causal inference in non-experimental data and compare results. By applying study design and data analysis techniques that control for confounding in different ways than regression adjustment, researchers may strengthen the scientific relevance of observational studies.

摘要

随机对照试验(RCTs)通常被视为因果推断的黄金标准。这是因为可以用最少的假设来识别感兴趣的效应,尤其是背景特征方面的不平衡。然而,由于进行随机对照试验成本高昂、耗时且有时不道德,观察性研究经常被用于研究因果关联。在这些研究中,不平衡或混杂通常通过多元回归来控制,而这需要很强的假设。本手稿的目的是描述观察性研究中几种控制混杂的方法的优缺点,并展示它们在横断面数据集中的应用,该数据集使用了智利拉平塔纳市胡安·巴勃罗二世初级保健诊所的患者登记数据。该数据集包含5855个家庭的回复,这些家庭提供了关于家庭社会人口统计学、家庭功能以及家庭成员健康问题的完整信息。我们采用回归调整、分层、限制、匹配倾向得分匹配、标准化和逆概率加权来说明在非实验数据中进行更好因果推断的方法,并比较结果。通过应用以与回归调整不同的方式控制混杂的研究设计和数据分析技术,研究人员可以增强观察性研究的科学相关性。

相似文献

1
Squeezing observational data for better causal inference: Methods and examples for prevention research.
Int J Psychol. 2017 Apr;52(2):96-105. doi: 10.1002/ijop.12275. Epub 2016 Apr 20.
2
Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.
J Eval Clin Pract. 2017 Aug;23(4):697-702. doi: 10.1111/jep.12714. Epub 2017 Jan 24.
3
Causal inference with missing exposure information: Methods and applications to an obstetric study.
Stat Methods Med Res. 2016 Oct;25(5):2053-2066. doi: 10.1177/0962280213513758. Epub 2013 Dec 5.
4
Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
Am J Epidemiol. 2017 Jan 1;185(1):65-73. doi: 10.1093/aje/kww165. Epub 2016 Dec 9.
6
Propensity Score Methods: Theory and Practice for Anesthesia Research.
Anesth Analg. 2018 Oct;127(4):1074-1084. doi: 10.1213/ANE.0000000000002920.
9
Assessing causal treatment effect estimation when using large observational datasets.
BMC Med Res Methodol. 2019 Nov 14;19(1):207. doi: 10.1186/s12874-019-0858-x.
10
A practical guide to estimating treatment effects in patients with rheumatic diseases using real-world data.
Rheumatol Int. 2024 Jul;44(7):1265-1274. doi: 10.1007/s00296-024-05597-2. Epub 2024 Apr 24.

本文引用的文献

1
Effect identification in comparative effectiveness research.
EGEMS (Wash DC). 2013 Jan 17;1(1):1004. doi: 10.13063/2327-9214.1004. eCollection 2013.
2
Family functioning style and health: opportunities for health prevention in primary care.
Br J Gen Pract. 2012 Mar;62(596):e198-203. doi: 10.3399/bjgp12X630098.
3
Invited commentary: positivity in practice.
Am J Epidemiol. 2010 Mar 15;171(6):674-7; discussion 678-81. doi: 10.1093/aje/kwp436. Epub 2010 Feb 5.
4
The consistency statement in causal inference: a definition or an assumption?
Epidemiology. 2009 Jan;20(1):3-5. doi: 10.1097/EDE.0b013e31818ef366.
5
Evidence-based public health: moving beyond randomized trials.
Am J Public Health. 2004 Mar;94(3):400-5. doi: 10.2105/ajph.94.3.400.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验