Linden Ariel
Linden Consulting Group, LLC, Ann Arbor, MI, USA.
Division of General Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA.
J Eval Clin Pract. 2017 Aug;23(4):697-702. doi: 10.1111/jep.12714. Epub 2017 Jan 24.
RATIONALE, AIMS AND OBJECTIVES: When a randomized controlled trial is not feasible, health researchers typically use observational data and rely on statistical methods to adjust for confounding when estimating treatment effects. These methods generally fall into 3 categories: (1) estimators based on a model for the outcome using conventional regression adjustment; (2) weighted estimators based on the propensity score (ie, a model for the treatment assignment); and (3) "doubly robust" (DR) estimators that model both the outcome and propensity score within the same framework. In this paper, we introduce a new DR estimator that utilizes marginal mean weighting through stratification (MMWS) as the basis for weighted adjustment. This estimator may prove more accurate than treatment effect estimators because MMWS has been shown to be more accurate than other models when the propensity score is misspecified. We therefore compare the performance of this new estimator to other commonly used treatment effects estimators.
Monte Carlo simulation is used to compare the DR-MMWS estimator to regression adjustment, 2 weighted estimators based on the propensity score and 2 other DR methods. To assess performance under varied conditions, we vary the level of misspecification of the propensity score model as well as misspecify the outcome model.
Overall, DR estimators generally outperform methods that model one or the other components (eg, propensity score or outcome). The DR-MMWS estimator outperforms all other estimators when both the propensity score and outcome models are misspecified and performs equally as well as other DR estimators when only the propensity score is misspecified.
Health researchers should consider using DR-MMWS as the principal evaluation strategy in observational studies, as this estimator appears to outperform other estimators in its class.
原理、目的和目标:当随机对照试验不可行时,健康研究人员通常使用观察性数据,并依靠统计方法在估计治疗效果时调整混杂因素。这些方法通常分为三类:(1)使用传统回归调整基于结果模型的估计器;(2)基于倾向得分(即治疗分配模型)的加权估计器;(3)在同一框架内对结果和倾向得分都进行建模的“双重稳健”(DR)估计器。在本文中,我们介绍一种新的DR估计器,它利用分层边际均值加权(MMWS)作为加权调整的基础。由于当倾向得分指定错误时,MMWS已被证明比其他模型更准确,所以这个估计器可能比治疗效果估计器更准确。因此,我们将这个新估计器的性能与其他常用的治疗效果估计器进行比较。
使用蒙特卡罗模拟将DR-MMWS估计器与回归调整、基于倾向得分的2种加权估计器以及2种其他DR方法进行比较。为了评估在不同条件下的性能,我们改变倾向得分模型的指定错误水平以及错误指定结果模型。
总体而言,DR估计器通常优于只对其中一个组件(如倾向得分或结果)进行建模的方法。当倾向得分和结果模型都指定错误时,DR-MMWS估计器优于所有其他估计器;当只有倾向得分指定错误时,其表现与其他DR估计器相当。
健康研究人员在观察性研究中应考虑使用DR-MMWS作为主要评估策略,因为这个估计器在同类中似乎优于其他估计器。