Suppr超能文献

实用指南:利用真实世界数据估计风湿性疾病患者的治疗效果。

A practical guide to estimating treatment effects in patients with rheumatic diseases using real-world data.

机构信息

Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.

Faculty of Health Science, OsloMet - Oslo Metropolitan University, Oslo, Norway.

出版信息

Rheumatol Int. 2024 Jul;44(7):1265-1274. doi: 10.1007/s00296-024-05597-2. Epub 2024 Apr 24.

Abstract

OBJECTIVE

Randomized controlled trials are considered the gold standard in study methodology. However, due to their study design and inclusion criteria, these studies may not capture the heterogeneity of real-world patient populations. In contrast, the lack of randomization and the presence of both measured and unmeasured confounding factors could bias the estimated treatment effect when using observational data. While causal inference methods allow for the estimation of treatment effects, their mathematical complexity may hinder their application in clinical research.

METHODS

We present a practical, nontechnical guide using a common statistical package (Stata) and a motivational simulated dataset that mirrors real-world observational data from patients with rheumatic diseases. We demonstrate regression analysis, regression adjustment, inverse-probability weighting, propensity score (PS) matching and two robust estimation methods.

RESULTS

Although the methods applied to control for confounding factors produced similar results, the commonly used one-to-one PS matching method could yield biased results if not thoroughly assessed.

CONCLUSION

The guide we propose aims to facilitate the use of readily available methods in a common statistical package. It may contribute to robust and transparent epidemiological and statistical methods, thereby enhancing effectiveness research using observational data in rheumatology.

摘要

目的

随机对照试验被认为是研究方法的金标准。然而,由于其研究设计和纳入标准,这些研究可能无法捕捉到真实患者群体的异质性。相比之下,使用观察性数据时,缺乏随机化以及存在既测量和未测量的混杂因素可能会导致估计的治疗效果产生偏差。虽然因果推断方法可以估计治疗效果,但它们的数学复杂性可能会阻碍其在临床研究中的应用。

方法

我们使用常见的统计软件(Stata)和一个模拟的激励性数据集,展示了一种实用的、非技术性的指南,该数据集反映了风湿性疾病患者的真实世界观察性数据。我们演示了回归分析、回归调整、逆概率加权、倾向评分(PS)匹配和两种稳健估计方法。

结果

尽管应用于控制混杂因素的方法产生了相似的结果,但如果未进行彻底评估,常用的一对一 PS 匹配方法可能会产生有偏的结果。

结论

我们提出的指南旨在促进在常见统计软件中使用现成的方法。它可能有助于促进使用观察性数据进行风湿病的有效性研究中使用稳健和透明的流行病学和统计方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验