Tomimatsu Hajime, Tang Yanhong
Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-0053, Japan.
Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
J Plant Res. 2016 May;129(3):365-77. doi: 10.1007/s10265-016-0817-0. Epub 2016 Apr 19.
Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.
了解陆生植物对高浓度二氧化碳环境的光合响应对于应对大气二氧化碳浓度升高的生态影响至关重要。大多数用于全球碳问题的光合模型基于稳态光合作用,即在恒定环境条件下测量光合作用;然而,自然条件下的陆生植物光合作用具有高度动态性,光合速率会随着环境因素的快速变化而改变。为了预测未来光合作用对全球碳循环的贡献,有必要了解与高二氧化碳水平相关的光合作用动态特性。在这篇综述中,我们总结了当前关于在实验性升高二氧化碳条件下光合作用对光强变化响应的知识体系。我们发现,短期暴露于高二氧化碳会提高光合速率、缩短光合诱导时间并减少光照后二氧化碳猝发,从而在动态光合作用过程中增加叶片碳积累。然而,植物生长期间长期暴露于高二氧化碳对动态光合作用有不同影响。高浓度二氧化碳会增加某些物种光合诱导过程中的碳积累,但对其他物种没有显著影响。一些研究表明,高二氧化碳水平会降低光合诱导过程中对核酮糖-1,5-二磷酸(RuBP)再生和核酮糖-1,5-二磷酸羧化酶(Rubisco)活化的生化限制,而高浓度二氧化碳对气孔导度的影响因物种而异。很少有研究考察环境因素对高浓度二氧化碳对动态光合作用影响的作用。我们确定了几个知识空白,需要加以解决以帮助未来预测高二氧化碳环境中的光合作用。