Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands
Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands.
J Exp Bot. 2015 May;66(9):2415-26. doi: 10.1093/jxb/eru406. Epub 2014 Oct 16.
Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis.
叶片受到的光强通常处于波动状态,从而引发动态光合作用。尽管稳态光合作用对环境因素的响应已得到广泛研究,但动态光合作用的调节机制仍然知之甚少且较为分散。本综述通过总结现有数据并确定必要的研究问题,利用机制框架来解决这一差异,从而深入了解环境因素与光合作用动态行为之间的相互作用。首先,将动态光合作用分为与质子和电子传递、非光化学猝灭、卡尔文循环中代谢物通量的控制(Rubisco 的激活状态和 RuBP 再生、光照后代谢物周转)以及 CO₂ 供应给 Rubisco 的控制(气孔和叶肉导度变化)相关的亚过程。其次,描述了环境因素对动态光合作用及其亚过程的调节。环境 CO₂浓度和温度(高达约 35°C)的升高会增加光合作用诱导的速度并降低其损失,从而促进更有效的动态光合作用。根据气孔导度的灵敏度,动态光合作用还可能受到空气湿度的调节。对于不同物种和环境条件下光合作用诱导损失的环境调节、质膜导度的动态变化以及气孔导度对不同物种和环境条件的限制程度等方面仍存在重大知识空白。在不同环境条件下对特定过程的突变体或遗传转化体的研究可能会在理解动态光合作用的控制方面取得重大进展。