Suppr超能文献

针对连续型、二分类和计数型结局的亚组治疗效应模式图(STEPP)分析。

Subpopulation Treatment Effect Pattern Plot (STEPP) analysis for continuous, binary, and count outcomes.

作者信息

Yip Wai-Ki, Bonetti Marco, Cole Bernard F, Barcella William, Wang Xin Victoria, Lazar Ann, Gelber Richard D

机构信息

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA

Carlo F. Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy.

出版信息

Clin Trials. 2016 Aug;13(4):382-90. doi: 10.1177/1740774516643297. Epub 2016 Apr 19.

Abstract

BACKGROUND

For the past few decades, randomized clinical trials have provided evidence for effective treatments by comparing several competing therapies. Their successes have led to numerous new therapies to combat many diseases. However, since their conclusions are based on the entire cohort in the trial, the treatment recommendation is for everyone, and may not be the best option for an individual. Medical research is now focusing more on providing personalized care for patients, which requires investigating how patient characteristics, including novel biomarkers, modify the effect of current treatment modalities. This is known as heterogeneity of treatment effects. A better understanding of the interaction between treatment and patient-specific prognostic factors will enable practitioners to expand the availability of tailored therapies, with the ultimate goal of improving patient outcomes. The Subpopulation Treatment Effect Pattern Plot (STEPP) approach was developed to allow researchers to investigate the heterogeneity of treatment effects on survival outcomes across values of a (continuously measured) covariate, such as a biomarker measurement.

METHODS

Here, we extend the Subpopulation Treatment Effect Pattern Plot approach to continuous, binary, and count outcomes, which can be easily modeled using generalized linear models. With this extension of Subpopulation Treatment Effect Pattern Plot, these additional types of treatment effects within subpopulations defined with respect to a covariate of interest can be estimated, and the statistical significance of any observed heterogeneity of treatment effect can be assessed using permutation tests. The desirable feature that commonly used models are applied to well-defined patient subgroups to estimate treatment effects is retained in this extension.

RESULTS

We describe a simulation study to confirm that the proper Type I error rate is maintained when there is no treatment heterogeneity, and a power study to show that the statistics have power to detect treatment heterogeneity under alternative scenarios. As an illustration, we apply the methods to data from the Aspirin/Folate Polyp Prevention Study, a clinical trial evaluating the effect of oral aspirin, folic acid, or both as a chemoprevention agent against colorectal adenomas. The pre-existing R software package stepp has been extended to handle continuous, binary, and count data using Gaussian, Bernoulli, and Poisson models, and it is available on the Comprehensive R Archive Network.

CONCLUSION

The extension of the method and the availability of new software now permit STEPP to be applied to the full range of clinical trial end points.

摘要

背景

在过去几十年中,随机临床试验通过比较几种相互竞争的疗法,为有效治疗提供了证据。其成功催生了众多对抗多种疾病的新疗法。然而,由于其结论基于试验中的整个队列,治疗建议是针对所有人的,可能并非个体的最佳选择。医学研究现在更侧重于为患者提供个性化护理,这需要研究患者特征(包括新型生物标志物)如何改变当前治疗方式的效果。这被称为治疗效果的异质性。更好地理解治疗与患者特异性预后因素之间的相互作用,将使从业者能够扩大量身定制疗法的可及性,最终目标是改善患者预后。亚组治疗效果模式图(STEPP)方法的开发,是为了让研究人员能够研究在一个(连续测量的)协变量(如生物标志物测量值)的不同取值下,治疗效果对生存结局的异质性。

方法

在此,我们将亚组治疗效果模式图方法扩展到连续、二元和计数结局,这些结局可以使用广义线性模型轻松建模。通过这种亚组治疗效果模式图的扩展,可以估计在相对于感兴趣的协变量定义的亚组内这些额外类型的治疗效果,并使用置换检验评估观察到的治疗效果异质性的统计显著性。在这个扩展中保留了将常用模型应用于定义明确的患者亚组以估计治疗效果这一理想特性。

结果

我们描述了一项模拟研究,以确认在不存在治疗异质性时能维持适当的I型错误率,以及一项效能研究,以表明在替代情景下这些统计量有能力检测治疗异质性。作为示例,我们将这些方法应用于阿司匹林/叶酸息肉预防研究的数据,该临床试验评估口服阿司匹林、叶酸或两者作为化学预防剂预防结直肠腺瘤的效果。现有的R软件包stepp已得到扩展,以使用高斯、伯努利和泊松模型处理连续、二元和计数数据,并且可在综合R存档网络上获取。

结论

该方法的扩展以及新软件的可用性现在使STEPP能够应用于全范围的临床试验终点。

相似文献

6
Meta-STEPP with random effects.Meta-STEPP 随机效应模型。
Res Synth Methods. 2018 Jun;9(2):312-317. doi: 10.1002/jrsm.1288. Epub 2018 Jan 22.

引用本文的文献

本文引用的文献

3
Subgroup identification from randomized clinical trial data.随机临床试验数据中的亚组识别。
Stat Med. 2011 Oct 30;30(24):2867-80. doi: 10.1002/sim.4322. Epub 2011 Aug 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验