Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA.
Res Synth Methods. 2018 Jun;9(2):312-317. doi: 10.1002/jrsm.1288. Epub 2018 Jan 22.
We recently developed a method called Meta-STEPP based on the fixed-effects meta-analytic approach to explore treatment effect heterogeneity across a continuous covariate for individual time-to-event data arising from multiple clinical trials. Meta-STEPP forms overlapping subpopulation windows (meta-windows) along a continuous covariate of interest, estimates the overall treatment effect in each meta-window using standard fixed-effects method, plots them against the continuous covariate, and tests for treatment-effect heterogeneity across the range of covariate values. Here, we extend this method using random-effects methods and find it to be more conservative than the fixed-effects method. Both the random- and fixed-effects Meta-STEPP are implemented in R.
我们最近开发了一种名为 Meta-STEPP 的方法,该方法基于固定效应荟萃分析方法,用于探索来自多个临床试验的个体事件时间数据中连续协变量的治疗效果异质性。Meta-STEPP 沿着感兴趣的连续协变量形成重叠的亚群窗口(meta-windows),使用标准固定效应方法在每个 meta-window 中估计总体治疗效果,将其绘制在连续协变量上,并检验协变量值范围内的治疗效果异质性。在这里,我们使用随机效应方法扩展了该方法,并发现它比固定效应方法更保守。随机效应和固定效应的 Meta-STEPP 都在 R 中实现。