Krapf Diego, Campagnola Grace, Nepal Kanti, Peersen Olve B
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
Phys Chem Chem Phys. 2016 May 14;18(18):12633-41. doi: 10.1039/c6cp00937a. Epub 2016 Apr 20.
Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems to be deceivingly simple, recent studies showing passive superdiffusive transport suggest that diffusion on surfaces may hide rich complexities. In particular, bulk-mediated diffusion occurs when molecules are transiently released from the surface to perform three-dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a molecule always return to the surface but the mean jump length is infinite. Such behavior is associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajectories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD but it remains a random variable, even in the long observation-time limit. The distribution of time averages is shown to agree with a Lévy flight model. Our results also unravel intriguing anomalies in the statistics of displacements. The time-averaged MSD is shown to depend on experimental time and investigations of fractional moments show a scaling 〈|r(t)|(q)〉∼t(qν(q)) with non-linear exponents, i.e. ν(q) ≠ const. This type of behavior is termed strong anomalous diffusion and is rare among experimental observations.
固液界面处的扩散在许多技术和生物物理过程中至关重要。尽管其行为看似简单得具有欺骗性,但最近显示被动超扩散输运的研究表明,表面上的扩散可能隐藏着丰富的复杂性。特别是,当分子从表面短暂释放以在液体主体中进行三维游移时,就会发生体介导扩散。这种现象具有二分性,即分子总是会回到表面,但平均跳跃长度是无限的。这种行为与中心极限定理的失效和弱遍历性破坏有关。在这里,我们使用单粒子追踪来研究支撑脂质双分子层上体介导扩散的统计特性。我们发现,单个轨迹的时间平均均方位移(MSD),即扩散过程中的典型度量,不会收敛到系综MSD,而是仍然是一个随机变量,即使在长时间观测极限下也是如此。时间平均的分布显示与 Lévy 飞行模型一致。我们的结果还揭示了位移统计中的有趣异常现象。时间平均MSD显示取决于实验时间,并且对分数阶矩的研究表明存在标度〈|r(t)|(q)〉∼t(qν(q)),其中指数是非线性的,即ν(q) ≠ 常数。这种行为类型被称为强反常扩散,在实验观测中很少见。