Suppr超能文献

使用TALEN和CRISPR/Cas9技术检测CYP9M10与拟除虫菊酯抗性之间的因果关系。

Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies.

作者信息

Itokawa Kentaro, Komagata Osamu, Kasai Shinji, Ogawa Kohei, Tomita Takashi

机构信息

Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.

Japan Agency for Medical Research and Development (AMED), 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004 Japan.

出版信息

Sci Rep. 2016 Apr 20;6:24652. doi: 10.1038/srep24652.

Abstract

Recently-emerging genome editing technologies have enabled targeted gene knockout experiments even in non-model insect species. For studies on insecticide resistance, genome editing technologies offer some advantages over the conventional reverse genetic technique, RNA interference, for testing causal relationships between genes of detoxifying enzymes and resistance phenotypes. There were relatively abundant evidences indicating that the overexpression of a cytochrome P450 gene CYP9M10 confers strong pyrethroid resistance in larvae of the southern house mosquito Culex quinquefasciatus. However, reverse genetic verification has not yet been obtained because of the technical difficulty of microinjection into larvae. Here, we tested two genome editing technologies, transcription activator-like effector nucleases (TALEN)s and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), to disrupt CYP9M10 in a resistant strain of C. quinquefasciatus. Additionally, we developed a novel, effective approach to construct a TALE using the chemical cleavage of phosphorothioate inter-nucleotide linkages in the level 1 assembly. Both TALEN and CRISPR/Cas9 induced frame-shifting mutations in one or all copies of CYP9M10 in a pyrethroid-resistant strain. A line fixed with a completely disrupted CYP9M10 haplotype showed more than 100-fold reduction in pyrethroid resistance in the larval stage.

摘要

最近出现的基因组编辑技术甚至能够在非模式昆虫物种中进行靶向基因敲除实验。对于杀虫剂抗性研究而言,与传统的反向遗传学技术RNA干扰相比,基因组编辑技术在测试解毒酶基因与抗性表型之间的因果关系方面具有一些优势。有相对丰富的证据表明,细胞色素P450基因CYP9M10的过表达赋予了南方家蚊致倦库蚊幼虫对拟除虫菊酯的强抗性。然而,由于向幼虫显微注射的技术难度,尚未获得反向遗传学验证。在此,我们测试了两种基因组编辑技术,即转录激活样效应物核酸酶(TALEN)和成簇规律间隔短回文重复序列(CRISPR/Cas9),以破坏致倦库蚊抗性品系中的CYP9M10。此外,我们开发了一种新颖、有效的方法,利用硫代磷酸酯核苷酸间连接在一级组装中的化学切割来构建TALE。TALEN和CRISPR/Cas9均在拟除虫菊酯抗性品系的CYP9M10的一个或所有拷贝中诱导了移码突变。一个固定有完全破坏的CYP9M10单倍型的品系在幼虫阶段对拟除虫菊酯的抗性降低了100倍以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee80/4837413/6466c4f34a37/srep24652-f1.jpg

相似文献

3
Genomic structures of Cyp9m10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus.
Insect Biochem Mol Biol. 2010 Sep;40(9):631-40. doi: 10.1016/j.ibmb.2010.06.001. Epub 2010 Jun 18.
5
Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus.
Insect Mol Biol. 2010 Dec;19(6):717-26. doi: 10.1111/j.1365-2583.2010.01030.x.
8
Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus.
Insect Biochem Mol Biol. 2010 Feb;40(2):146-52. doi: 10.1016/j.ibmb.2010.01.006. Epub 2010 Jan 18.
9
Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.
Theriogenology. 2019 Jul 1;132:1-11. doi: 10.1016/j.theriogenology.2019.03.029. Epub 2019 Apr 1.
10
Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-seq.
Mol Genet Genomics. 2016 Feb;291(1):309-21. doi: 10.1007/s00438-015-1109-4. Epub 2015 Sep 16.

引用本文的文献

1
CRISPR/Cas Technology in Insect Insecticide Resistance.
Insects. 2025 Mar 26;16(4):345. doi: 10.3390/insects16040345.
2
Generation of Cas9 Knock-In Mosquito Cells.
DNA (Basel). 2025 Mar;5(1). doi: 10.3390/dna5010001. Epub 2025 Jan 1.
6
The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito .
Front Physiol. 2022 Jan 13;12:802584. doi: 10.3389/fphys.2021.802584. eCollection 2021.
7
CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus.
G3 (Bethesda). 2021 Aug 7;11(8). doi: 10.1093/g3journal/jkab201.
9
Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito .
CRISPR J. 2021 Aug;4(4):595-608. doi: 10.1089/crispr.2021.0028. Epub 2021 Jul 19.

本文引用的文献

3
RNA interference: Applications and advances in insect toxicology and insect pest management.
Pestic Biochem Physiol. 2015 May;120:109-17. doi: 10.1016/j.pestbp.2015.01.002. Epub 2015 Jan 9.
5
Rapid and efficient assembly of transcription activator-like effector genes by USER cloning.
J Genet Genomics. 2014 Jun 20;41(6):339-47. doi: 10.1016/j.jgg.2014.05.002. Epub 2014 May 17.
6
SAPTA: a new design tool for improving TALE nuclease activity.
Nucleic Acids Res. 2014 Apr;42(6):e47. doi: 10.1093/nar/gkt1363. Epub 2014 Jan 16.
7
ULtiMATE system for rapid assembly of customized TAL effectors.
PLoS One. 2013 Sep 27;8(9):e75649. doi: 10.1371/journal.pone.0075649. eCollection 2013.
8
Gene amplification and microsatellite polymorphism underlie a recent insect host shift.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19460-5. doi: 10.1073/pnas.1314122110. Epub 2013 Nov 11.
9
Towards the elements of successful insect RNAi.
J Insect Physiol. 2013 Dec;59(12):1212-21. doi: 10.1016/j.jinsphys.2013.08.014. Epub 2013 Sep 13.
10
TALENoffer: genome-wide TALEN off-target prediction.
Bioinformatics. 2013 Nov 15;29(22):2931-2. doi: 10.1093/bioinformatics/btt501. Epub 2013 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验