Department of Physics, Banaras Hindu University , Varanasi-221005, India.
ACS Appl Mater Interfaces. 2016 May 11;8(18):11698-710. doi: 10.1021/acsami.6b01876. Epub 2016 Apr 29.
The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting surfaces significantly from wear and tear.
微波合成的还原氧化石墨烯(MRG)、硼掺杂还原氧化石墨烯(B-MRG)、氮掺杂还原氧化石墨烯(N-MRG)、硼氮共掺杂还原氧化石墨烯(B-N-MRG)和 TiO2 增强的 B-N-MRG(TiO2-B-N-MRG)纳米材料已经通过各种最先进的技术进行了合成和表征,如拉曼光谱、粉末 X 射线衍射、扫描电子显微镜(SEM)与能量色散 X 射线光谱、高分辨率透射电子显微镜和 X 射线光电子能谱。此外,还使用四球机在优化的添加剂浓度(0.15%w/v)下,评估了这些纳米材料作为中性石蜡油中抗磨添加剂的摩擦学性能。摩擦学参数,如平均磨损痕迹直径、摩擦系数和磨损率,表明这些纳米材料有潜力作为环保型无硫酸盐灰分、无磷和无硫的抗磨润滑剂添加剂进行开发。MRG 在连续掺杂氮、硼以及氮和硼之后,其减摩和抗磨性能得到了提高。在这些添加剂中,B-N 共掺杂的 MRG 在石蜡基油中表现出了优异的摩擦学性能。此外,在其与 TiO2 纳米粒子的增强后,B-N 共掺杂的 MRG 的承载能力得到了显著提高。通过 SEM 和接触模式原子力显微镜对存在各种添加剂的润滑轨迹的表面形貌进行了对比研究。X 射线光电子能谱研究证明,TiO2-B-N-MRG 的优异润滑性能是由于在摩擦接触过程中形成了由氮化硼、吸附的石墨烯层和摩擦烧结的 TiO2 纳米粒子组成的摩擦膜。这些基于石墨烯的纳米材料不含硫、卤素和磷,因此它们作为绿色抗磨添加剂,可显著保护相互作用的表面免受磨损。