Suppr超能文献

计算模型表明,即使在皮肤力学发生变化时,表面压力也能可靠地传递给触觉感受器。

Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics.

作者信息

Wang Yuxiang, Baba Yoshichika, Lumpkin Ellen A, Gerling Gregory J

机构信息

Department of Systems and Information Engineering, University of Virginia, Charlottesville, Virginia; Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia;

Department of Dermatology, Columbia University College of Physicians & Surgeons, New York, New York; and.

出版信息

J Neurophysiol. 2016 Jul 1;116(1):218-28. doi: 10.1152/jn.00624.2015. Epub 2016 Apr 20.

Abstract

Distinct patterns in neuronal firing are observed between classes of cutaneous afferents. Such differences may be attributed to end-organ morphology, distinct ion-channel complements, and skin microstructure, among other factors. Even for just the slowly adapting type I afferent, the skin's mechanics for a particular specimen might impact the afferent's firing properties, especially given the thickness and elasticity of skin can change dramatically over just days. Here, we show computationally that the skin can reliably convey indentation magnitude, rate, and spatial geometry to the locations of tactile receptors even amid changes in skin's structure. Using finite element analysis and neural dynamics models, we considered the skin properties of six mice that span a representative cohort. Modeling the propagation of the surface stimulus to the interior of the skin demonstrated that there can be large variance in stresses and strains near the locations of tactile receptors, which can lead to large variance in static firing rate. However, variance is significantly reduced when the stimulus tip is controlled by surface pressure and compressive stress is measured near the end organs. This particular transformation affords the least variability in predicted firing rates compared with others derived from displacement, force, strain energy density, or compressive strain. Amid changing skin mechanics, stimulus control by surface pressure may be more naturalistic and optimal and underlie how animals actively explore the tactile environment.

摘要

在不同类型的皮肤传入神经之间观察到了神经元放电的不同模式。这种差异可能归因于终末器官形态、不同的离子通道组成以及皮肤微观结构等因素。即使对于仅缓慢适应的I型传入神经,特定标本的皮肤力学特性也可能影响传入神经的放电特性,特别是考虑到皮肤的厚度和弹性在短短几天内就可能发生显著变化。在此,我们通过计算表明,即使在皮肤结构发生变化的情况下,皮肤仍能可靠地将压痕大小、速率和空间几何形状传递给触觉感受器所在位置。使用有限元分析和神经动力学模型,我们考虑了来自具有代表性群体的六只小鼠的皮肤特性。对表面刺激向皮肤内部传播的建模表明,在触觉感受器位置附近的应力和应变可能存在很大差异,这可能导致静态放电率出现很大差异。然而,当刺激尖端由表面压力控制且在终末器官附近测量压缩应力时,差异会显著减小。与从位移、力、应变能密度或压缩应变得出的其他结果相比,这种特定的转换在预测放电率方面具有最小的变异性。在皮肤力学不断变化的情况下,通过表面压力进行刺激控制可能更符合自然规律且最为理想,并且是动物积极探索触觉环境的基础。

相似文献

引用本文的文献

1
Biomechanics of the finger pad in response to torsion.指垫的扭转生物力学响应。
J R Soc Interface. 2023 Apr;20(201):20220809. doi: 10.1098/rsif.2022.0809. Epub 2023 Apr 19.
8
Touch Receptors Undergo Rapid Remodeling in Healthy Skin.触觉感受器在健康皮肤中会迅速重塑。
Cell Rep. 2016 Nov 8;17(7):1719-1727. doi: 10.1016/j.celrep.2016.10.034.

本文引用的文献

2
Tissue mechanics govern the rapidly adapting and symmetrical response to touch.组织力学控制着对触摸的快速适应性对称反应。
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6955-63. doi: 10.1073/pnas.1514138112. Epub 2015 Dec 1.
4
Theory, models and biology.理论、模型与生物学。
Elife. 2015 Jul 14;4:e07158. doi: 10.7554/eLife.07158.
10
Hyperelastic Material Properties of Mouse Skin under Compression.压缩状态下小鼠皮肤的超弹性材料特性
PLoS One. 2013 Jun 18;8(6):e67439. doi: 10.1371/journal.pone.0067439. Print 2013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验