School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and Institute of Neuroscience (IoNS), Université catholique de Louvain, 1348 Louvain-la-Neuve and 1200 Brussels, Belgium.
J R Soc Interface. 2023 Apr;20(201):20220809. doi: 10.1098/rsif.2022.0809. Epub 2023 Apr 19.
Surface skin deformation of the finger pad during partial slippage at finger-object interfaces elicits firing of the tactile sensory afferents. A torque around the contact normal is often present during object manipulation, which can cause partial rotational slippage. Until now, studies of surface skin deformation have used stimuli sliding rectilinearly and tangentially to the skin. Here, we study surface skin dynamics under pure torsion of the right index finger of seven adult participants (four males). A custom robotic platform stimulated the finger pad with a flat clean glass surface, controlling the normal forces and rotation speeds applied while monitoring the contact interface using optical imaging. We tested normal forces between 0.5 N and 10 N at a fixed angular velocity of 20° s and angular velocities between 5° s and 100° s at a fixed normal force of 2 N. We observe the characteristic pattern by which partial slips develop, starting at the periphery of the contact and propagating towards its centre, and the resulting surface strains. The 20-fold range of normal forces and angular velocities used highlights the effect of those parameters on the resulting torque and skin strains. Increasing normal force increases the contact area, the generated torque, strains and the twist angle required to reach full slip. On the other hand, increasing angular velocity causes more loss of contact at the periphery and higher strain rates (although it has no impact on resulting strains after the full rotation). We also discuss the surprisingly large inter-individual variability in skin biomechanics, notably observed in the twist angle the stimulus needs to rotate before reaching full slip.
手指与物体接触界面发生部分滑动时,手指垫表面皮肤的变形会引发触觉感觉传入纤维的兴奋。在物体操作过程中,通常会存在接触法向的扭矩,这可能导致部分旋转滑动。到目前为止,对表面皮肤变形的研究一直使用在皮肤表面上沿直线和切线滑动的刺激。在这里,我们研究了七个成年参与者(四名男性)的右食指在纯扭转下的表面皮肤动力学。一个定制的机器人平台使用平坦清洁的玻璃表面刺激指垫,控制施加的法向力和旋转速度,同时使用光学成像监测接触界面。我们测试了 0.5 N 到 10 N 之间的法向力,在固定角速度为 20° s 的情况下,以及 2 N 固定法向力下在 5° s 到 100° s 之间的角速度。我们观察到了部分滑动发展的特征模式,从接触的外围开始,并向其中心传播,以及由此产生的表面应变。所使用的 20 倍法向力和角速度范围突出了这些参数对产生的扭矩和皮肤应变的影响。法向力的增加会增加接触面积、产生的扭矩、应变以及达到完全滑动所需的扭转角度。另一方面,增加角速度会导致在接触的外围更多的接触损失和更高的应变速率(尽管它对完全旋转后的最终应变没有影响)。我们还讨论了皮肤生物力学中令人惊讶的个体间可变性,这主要表现在刺激达到完全滑动所需的扭转角度上。