Suppr超能文献

金属有机骨架/活性炭复合材料的制备及性能。

Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials.

机构信息

Chemistry Department, Faculty of Exact Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel.

出版信息

Langmuir. 2016 May 17;32(19):4935-44. doi: 10.1021/acs.langmuir.6b00528. Epub 2016 May 6.

Abstract

Metal organic frameworks (MOFs) have unique properties that make them excellent candidates for many high-tech applications. Nevertheless, their nonconducting character is an obstacle to their practical utilization in electronic and energy systems. Using the familiar HKUST-1 MOF as a model, we present a new method of imparting electrical conductivity to otherwise nonconducting MOFs by preparing MOF nanoparticles within the conducting matrix of mesoporous activated carbon (AC). This composite material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption measurements, and electron paramagnetic resonance (EPR) spectroscopy. We show that MOF nanoparticles grown within the carbon matrix maintain their crystalline characteristics and their surface area. Surprisingly, as a result of the composition process, EPR measurements revealed a copper signal that had not yet been achieved. For the first time, we could analyze the complex EPR response of HKUST-1. We demonstrate the high conductivity of the MOF composite and discuss various factors that are responsible for these results. Finally, we present an optional application for using the conductive MOF composite as a high-performance electrode for pseudocapacitors.

摘要

金属有机骨架(MOFs)具有独特的性质,使其成为许多高科技应用的理想候选材料。然而,它们的非导电性是其在电子和能源系统中实际应用的障碍。我们以常见的 HKUST-1 MOF 为例,提出了一种在介孔活性炭(AC)的导电基质中制备 MOF 纳米粒子,从而赋予原本不导电的 MOF 导电性的新方法。通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)、气体吸附测量和电子顺磁共振(EPR)光谱对该复合材料进行了研究。我们表明,在碳基质中生长的 MOF 纳米粒子保持其结晶特性和表面积。令人惊讶的是,由于组成过程,EPR 测量显示出尚未达到的铜信号。我们首次能够分析 HKUST-1 的复杂 EPR 响应。我们展示了 MOF 复合材料的高导电性,并讨论了导致这些结果的各种因素。最后,我们提出了一种将导电 MOF 复合材料用作高性能赝电容器电极的可选应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验