Carofino Brandi L, Ayanga Bernard, Tracey Lauren J, Brooke-Bisschop Travis, Justice Monica J
Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA.
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA.
Biol Open. 2016 May 15;5(5):645-53. doi: 10.1242/bio.017699.
PRDM14 is an epigenetic regulator known for maintaining embryonic stem cell identity and resetting potency in primordial germ cells. However, hematopoietic expression of Prdm14 at supraphysiological levels results in fully penetrant and rapid-onset T-cell acute lymphoblastic leukemia (T-ALL) in the mouse. Here, we show that PRDM14-induced T-ALLs are driven by NOTCH1, a frequently mutated driver of human T-ALL. Notch1 is activated in this murine model via RAG-dependent promoter deletions and subsequent production of truncated, ligand-independent protein from downstream regions of the Notch1 locus. These T-ALLs also have focal changes in H3K4me3 deposition at the Notch1 locus and global increases in both H3K4me1 and H3K4me3. Using a PRDM14-FLAG mouse model, we show that PRDM14 binds within an intron of Notch1 prior to leukemia development. Our data support the idea that PRDM14 binding promotes a chromatin state that allows access of the RAG recombinase complex to cryptic RAG signal sequences embedded at the Notch1 locus. Indeed, breeding into a RAG recombination-deficient background abrogates T-ALL development and prevents Notch1 deletions, while allowing for transient hematopoietic stem cell (HSC)-like pre-leukemia cell expansion. Together, our data suggest that PRDM14 expands a progenitor cell population while promoting a permissive epigenetic state for the creation of driver mutations (here, in Notch1), enabling cancer development through the misappropriation of endogenous cellular DNA recombination machinery.
PRDM14是一种表观遗传调节因子,以维持胚胎干细胞特性和重设原始生殖细胞的潜能而闻名。然而,Prdm14在超生理水平的造血表达会在小鼠中导致完全显性且快速发病的T细胞急性淋巴细胞白血病(T-ALL)。在此,我们表明PRDM14诱导的T-ALL由NOTCH1驱动,NOTCH1是人类T-ALL中频繁突变的驱动因子。在这个小鼠模型中,Notch1通过RAG依赖的启动子缺失以及随后从Notch1基因座下游区域产生截短的、不依赖配体的蛋白而被激活。这些T-ALL在Notch1基因座处的H3K4me3沉积也有局部变化,并且H3K4me1和H3K4me3在整体上均增加。使用PRDM14-FLAG小鼠模型,我们表明在白血病发生之前,PRDM14结合在Notch1的一个内含子内。我们的数据支持这样一种观点,即PRDM14的结合促进了一种染色质状态,使得RAG重组酶复合物能够接近嵌入在Notch1基因座处的隐蔽RAG信号序列。确实,与RAG重组缺陷背景杂交可消除T-ALL的发生并防止Notch1缺失,同时允许短暂的造血干细胞(HSC)样白血病前细胞扩增。总之,我们的数据表明PRDM14在促进允许产生驱动突变(此处为Notch1中的突变)的表观遗传状态的同时,扩大了祖细胞群体,通过内源性细胞DNA重组机制的不当利用促成癌症发展。